Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 9(3): 487-494, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38260954

RESUMEN

In this study, we present ultrasensitive infrared photodiodes based on PbS colloidal quantum dots (CQDs) using a double photomultiplication strategy that utilizes the accumulation of both electron and hole carriers. While electron accumulation was induced by ZnO trap states that were created by treatment in a humid atmosphere, hole accumulation was achieved using a long-chain ligand that increased the barrier to hole collection. Interestingly, we obtained the highest responsivity in photo-multiplicative devices with the long ligands, which contradicts the conventional belief that shorter ligands are more effective for optoelectronic devices. Using these two charge accumulation effects, we achieved an ultrasensitive detector with a responsivity above 7.84 × 102 A W-1 and an external quantum efficiency above 105% in the infrared region. We believe that the photomultiplication effect has great potential for surveillance systems, bioimaging, remote sensing, and quantum communication.

2.
Mater Horiz ; 9(8): 2172-2179, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642962

RESUMEN

Previous approaches to induce photomultiplication in organic diodes have increased the photosignal but lacked control over reducing background noise. This work presents a new interlayer design based on a heterojunction bilayer that concurrently enables photomultiplication and suppresses the dark current in organic shortwave infrared detectors to improve the overall detectivity. The heterojunction bilayer consists of a hole-transporting material copper thiocyanate and an electron-transporting material tin oxide, and this combination offers the ability to block charge injection in the dark. Under illumination, the bilayer promotes trap-assisted photomultiplication by lowering the tunneling barrier and amplifying the photocurrent through the injection of multiple carriers per absorbed photon. Upon incorporating the heterojunction interlayer in photodiodes and upconversion imagers, the devices achieve an external quantum efficiency up to 560% and a detectivity of 3.5 × 109 Jones. The upconversion efficiency of the imager doubles with a 1.7 fold improvement in contrast compared to the imager without the heterojunction interlayer. The new interlayer design is generalizable to work with different organic semiconductors, making it attractive and easy to integrate with emerging organic infrared systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...