Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900789

RESUMEN

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Asunto(s)
COVID-19 , Receptor para Productos Finales de Glicación Avanzada , SARS-CoV-2 , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , COVID-19/complicaciones , COVID-19/virología , Animales , Ratones , Inflamación/metabolismo , Inflamación/patología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Lesión Pulmonar/inmunología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Masculino , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Femenino
2.
Bioact Mater ; 21: 576-594, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36204281

RESUMEN

Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell-cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented.

3.
Adv Sci (Weinh) ; 9(26): e2201883, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751470

RESUMEN

Severe infectious diseases, such as coronavirus disease 2019 (COVID-19), can induce hypercytokinemia and multiple organ failure. In spite of the growing demand for peptide therapeutics against infectious diseases, current small molecule-based strategies still require frequent administration due to limited half-life and enzymatic digestion in blood. To overcome this challenge, a strategy to continuously express multi-level therapeutic peptide drugs on the surface of immune cells, is established. Here, chimeric T cells stably expressing therapeutic peptides are presented for treatment of severe infectious diseases. Using lentiviral system, T cells are engineered to express multi-level therapeutic peptides with matrix metallopeptidases- (MMP-) and tumor necrosis factor alpha converting enzyme- (TACE-) responsive cleavage sites on the surface. The enzymatic cleavage releases γ-carboxyglutamic acid of protein C (PC-Gla) domain and thrombin receptor agonist peptide (TRAP), which activate endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1), respectively. These chimeric T cells prevent vascular damage in tissue-engineered blood vessel and suppress hypercytokinemia and lung tissue damages in vivo, demonstrating promise for use of engineered T cells against sepsis and other infectious-related diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Antígenos CD/metabolismo , Antígenos CD/farmacología , Síndrome de Liberación de Citoquinas , Células Endoteliales/metabolismo , Humanos , Péptidos/metabolismo , Receptor PAR-1/metabolismo , Receptores de Superficie Celular/metabolismo , Linfocitos T/metabolismo
4.
Adv Healthc Mater ; 11(12): e2102581, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286780

RESUMEN

The tumor microenvironment (TME) is the environment around the tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix (ECM). Owing to its component interactions, the TME influences tumor growth and drug delivery in a highly complex manner. Although several vascularized cancer models are developed to mimic the TME in vitro, these models cannot comprehensively reflect blood vessel-tumor spheroid interactions. Here, a method for inducing controlled tumor angiogenesis by engineering the microenvironment is presented. The interstitial flow direction regulates the direction of capillary sprouting, showing that angiogenesis occurs in the opposite direction of flow, while the existence of lung fibroblasts affects the continuity and lumen formation of sprouted capillaries. The vascularized tumor model shows enhanced delivery of anticancer drugs and immune cells to the tumor spheroids because of the perfusable vascular networks. The possibility of capillary embolism using anticancer drug-conjugated liquid metal nanoparticles is investigated using the vascularized tumor model. This vascularized tumor platform can aid in the development of effective anticancer drugs and cancer immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacología , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Microambiente Tumoral
5.
Biomaterials ; 273: 120827, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33910079

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a global scale urges prompt and effective countermeasures. Recently, a study has reported that coronavirus disease-19 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with a decrease in albumin level, an increase in NETosis, blood coagulation, and cytokine level. Here, we present drug-loaded albumin nanoparticles as a therapeutic agent to resolve the clinical outcomes observed in severe SARS-CoV-2 patients. PEGylated nanoparticle albumin-bound (PNAB) was used to promote prolonged bioactivity of steroidal ginsenoside saponins, PNAB-Rg6 and PNAB-Rgx365. Our data indicate that the application of PNAB-steroidal ginsenoside can effectively reduce histone H4 and NETosis-related factors in the plasma, and alleviate SREBP2-mediated systemic inflammation in the PBMCs of SARS-CoV-2 ICU patients. The engineered blood vessel model confirmed that these drugs are effective in suppressing blood clot formation and vascular inflammation. Moreover, the animal model experiment showed that these drugs are effective in promoting the survival rate by alleviating tissue damage and cytokine storm. Altogether, our findings suggest that these PNAB-steroidal ginsenoside drugs have potential applications in the treatment of symptoms associated with severe SARS-CoV-2 patients, such as coagulation and cytokine storm.


Asunto(s)
COVID-19 , Ginsenósidos , Nanopartículas , Albúminas , Animales , Ginsenósidos/farmacología , Humanos , Polietilenglicoles , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA