Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 462, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627534

RESUMEN

Plant viruses evolves diverse strategies to overcome the limitations of their genomic capacity and express multiple proteins, despite the constraints imposed by the host translation system. Broad bean wilt virus 2 (BBWV2) is a widespread viral pathogen, causing severe damage to economically important crops. It is hypothesized that BBWV2 RNA2 possesses two alternative in-frame translation initiation codons, resulting in the production of two largely overlapping proteins, VP53 and VP37. In this study, we aim to investigate the expression and function of VP53, an N-terminally 128-amino-acid-extended form of the viral movement protein VP37, during BBWV2 infection. By engineering various recombinant and mutant constructs of BBWV2 RNA2, here we demonstrate that VP53 is indeed expressed during BBWV2 infection. We also provide evidence of the translation of the two overlapping proteins through ribosomal leaky scanning. Furthermore, our study highlights the indispensability of VP53 for successful systemic infection of BBWV2, as its removal results in the loss of virus infectivity. These insights into the translation mechanism and functional role of VP53 during BBWV2 infection significantly contribute to our understanding of the infection mechanisms employed by fabaviruses.


Asunto(s)
Fabavirus , Virus de Plantas , Fabavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus de Plantas/genética
2.
Virology ; 593: 110010, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38364352

RESUMEN

Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.


Asunto(s)
Crinivirus , Solanum lycopersicum , Animales , Crinivirus/genética , ADN Complementario/genética , Enfermedades de las Plantas , Insectos Vectores , Plantas , Solanum lycopersicum/genética
3.
Sci Rep ; 13(1): 7261, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142679

RESUMEN

Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.


Asunto(s)
Coinfección , Cucumovirus , Infecciones por Citomegalovirus , Vicia faba , Virosis , Plantas/genética , Vicia faba/genética , ARN Viral/genética , Enfermedades de las Plantas
4.
Plant Dis ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36734939

RESUMEN

Viburnum lentago (family Adoxaceae) is a perennial plant species native to northeastern United States and southern Canada. Globally, V. lentago is a popular garden plant due to its abundant flowers and beautiful autumnal color. V. lentago is also commercially cultivated for medicinal purposes because its roots and fruits can be used in herbal preparations (Jiao et al. 2021). In June 2022, virus-like symptoms of vein chlorosis and yellowing were observed in the leaves of many V. lentago trees planted in a public park in Wonju, South Korea. Leaf samples were collected from five symptomatic V. lentago trees. To identify the causal agent(s) of the virus-like symptoms, total RNA was isolated from one sample using PureLink® RNA Mini Kit (Invitrogen, USA) and subjected to library construction using Illumina TruSeq RNA Sample Preparation Kit v2 (Illumina, Inc., USA). RNA-Seq was performed using an Illumina NovaSeq 6000 system (Macrogen, Korea). De novo assembly of 118,878,556 quality-filtered reads was performed using the Trinity pipeline (Kwon et al. 2018), yielding 296,109 contigs. BLASTn and BLASTx analyses of the contigs against the GenBank viral reference database identified only one large contig (8,816 nt) containing a 26-nt poly(A) tail of viral origin. This contig had a maximum nucleotide identity of 85.53 % (with 99 % coverage) with isolate HZ (accession No. MH427034) of citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae), suggesting that the collected sample was infected with CLBV. All collected V. lentago samples were tested using RT-PCR with CLBV-specific primers (CLBV-Det-Fw 5'-AACGAGGCCAATTCTGCTAT-3' and CLBV-Det-Rv 5'-GACTGCTTGACTAACAC-CCA-3'). All samples were positive for CLBV. For biological indexing, sap from the symptomatic V. lentago leaves was mechanically inoculated to indicator plants, including Nicotiana benthamiana, N. occidentalis, N. tabacum, Datura stramonium, Chenopodium quinoa, Vigna unguiculata, and V. lentago. Three months later, only V. lentago developed the same vein chlorosis symptoms observed in the collected samples, and no other tested plants exhibited obvious symptoms. Further, only V. lentago sample tested positive for CLBV using RT-PCR analysis. To determine the complete genome sequence of the CLBV V. lentago isolate, the contig sequence was confirmed by de novo sequencing of the RT-PCR products amplified using CLBV-specific primers. The 5' terminal sequence of the contig was determined using the 5' rapid amplification of cDNA ends method (Seo et al. 2015). The full-length sequence of CLBV isolated from V. lentago was 8,795 nt in length (excluding poly(A) tail), and deposited in GenBank under the accession number OP751940. Although numerous isolates of CLBV have been identified in various plant species, including citrus, kiwi, and lemon plants (Cao et al. 2017), the V. lentago isolate is likely a distinct variant because its CP gene has a maximum nucleotide identity of 85.53 % with that of a kiwi isolate (MH339916). With little information available on viral diseases infecting V. lentago, this is the first identified and completely sequenced CLBV infecting V. lentago. Significantly, V. lentago plants infected with CLBV did not flower throughout the summer period, reducing their value as an ornamental plant. Furthermore, V. lentago might have acted as an intermediate host to transfer CLBV to other crops such as citrus. To the best of our knowledge, this is the first report of CLBV infecting V. lentago in South Korea and the world.

5.
Front Plant Sci ; 13: 994314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247604

RESUMEN

Plant viruses are obligate intracellular pathogens, and most depend on insect vectors for transmission between plants. Viral infection causes various physiological and metabolic changes in host traits, which subsequently influence the behavior and fitness of the insect vectors. Cucumber mosaic virus (CMV), one of the most widespread pathogens in pepper (Capsicum annuum L.), is transmitted by aphid vectors in a non-persistent manner. Here, we examined whether CMV infection in pepper affects the behavior of aphid vectors (Myzus persicae and Aphis glycines) in pepper. Aphid preference test revealed that significantly more aphids were attracted to CMV-infected pepper plants than to healthy plants. Comparative transcriptome analysis revealed a significant activation of the ethylene biosynthesis pathway in CMV-infected pepper plants. Indeed, gas chromatography analysis demonstrated that ethylene emission was significantly increased by CMV infection in pepper plants. Elevated ethylene emission in ethephon-treated healthy pepper increased their attractiveness to aphids. In contrast, aphid preference decreased after chemical inhibition of ethylene biosynthesis in CMV-infected pepper plants. Our results suggest that the ethylene emitted by CMV infection is a volatile cue that regulates the attractiveness of pepper plants to M. persicae and A. glycines.

6.
Mol Cell Probes ; 61: 101792, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35041994

RESUMEN

Tomato spotted wilt virus (TSWV) is a highly destructive virus for pepper. Introgression of the resistance gene Tsw in pepper is used to manage TSWV worldwide; however, the occurrence of Tsw resistance-breaking (RB) variants threatens the pepper industry. Here, we developed a multiplex reverse-transcription PCR assay for detection of recently emerged Tsw RB variants in South Korea with high specificity and sensitivity.


Asunto(s)
Tospovirus , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Tospovirus/genética
7.
Front Plant Sci ; 12: 746543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721473

RESUMEN

Broad bean wilt virus 2 (BBWV2) is an emerging virus in various economically important crops, especially pepper (Capsicum annuum L.), worldwide. Recently, the emergence of various BBWV2 strains that induce severe symptoms has increased damage to pepper crops. While the symptomatic variations among virus strains should be associated with differences in the transcriptomic reprogramming of host plants upon infection, underlying molecular mechanisms and associated genes are largely unknown. In the present study, we employed transcriptome analysis to identify responsible host factors for symptom enhancement in the BBWV2-pepper pathosystem using two distinct BBWV2 strains, PAP1 (a severe strain) and RP1 (a mild strain). Comparative analysis of the differentially expressed genes (DEGs) revealed that various genes associated with pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and ethylene signaling were significantly upregulated upon infection with the severe PAP1 strain, but not with the mild RP1 strain. Indeed, hormone analysis revealed that ethylene emission was significantly increased in pepper plants infected with PAP1. These observations imply that the activation of the PTI-associated defense responses reinforce symptom formation during BBWV2 infection in a virus strain-specific manner.

8.
Mol Cell Probes ; 60: 101775, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673202

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) is a seed-borne virus that causes significant economic losses in farms cultivating cucurbit plants. With the increase in global trade of cucurbit seeds, it is essential to develop a rapid, reliable, and convenient diagnostic method for the direct detection of CGMMV in these seeds for prevention and management of the disease. Here, we developed a one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the direct detection of CGMMV in cucurbit seeds. To improve the efficiency of the one-step RT-LAMP assay, six primers were designed to target the most conserved regions of the gene encoding the movement protein of CGMMV. Our one-step RT-LAMP assay was optimized to improve specificity and sensitivity for CGMMV detection in individual seeds. A comparison of the detection sensitivity revealed that our one-step RT-LAMP assay was 100-fold more sensitive than the current reverse transcription-polymerase chain reaction assay used for CGMMV quarantine in Korea. Collectively, the one-step RT-LAMP assay developed in the present study is appropriate for the direct detection of CGMMV in individual cucurbit seeds.


Asunto(s)
Transcripción Reversa , Tobamovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas , Sensibilidad y Especificidad , Tobamovirus/genética
9.
Virus Res ; 304: 198533, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384805

RESUMEN

Broad bean wilt virus 2 (BBWV2) is an evolutionarily successful RNA virus with an extensive host range and worldwide distribution that causes severe damage to crops. While numerous BBWV2 isolates from various plant species have been identified and their genome sequences determined, little information is available on the virulence and symptomatic characteristics corresponding to the genomic sequences. In this study, we provide integrated information on the molecular and pathogenic characteristics of three genetically distant BBWV2 isolates: BBWV2-PC, -LS2, and P3 obtained from Gentiana scabra, Leonurus sibiricus, and Pisum sativum, respectively. Phylogenetic and diversity analyses of the BBWV2 population included 42 isolates from various host species and revealed that RNA2 has higher genetic plasticity than RNA1 and may have evolved under host-imposed constraints. In addition, we generated an infectious cDNA clone of BBWV2-PC RNA2 (pBBWV2-PC-R2). Pseudo-recombination analysis of pBBWV2-PC-R2 further demonstrated that RNA2 determines the pathogenic characteristics of the PC isolate.


Asunto(s)
Fabavirus , Filogenia , ARN Viral/genética
10.
Plant Cell Physiol ; 62(9): 1446-1459, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34155514

RESUMEN

Trichomes are hair-like structures that are essential for abiotic and biotic stress responses. Tomato Hair (H), encoding a C2H2 zinc finger protein, was found to regulate the multicellular trichomes on stems. Here, we characterized Solyc10g078990 (hereafter Hair2, H2), its closest homolog, to examine whether it was involved in trichome development. The H2 gene was highly expressed in the leaves, and its protein contained a single C2H2 domain and was localized to the nucleus. The number and length of type I trichomes on the leaves and stems of knock-out h2 plants were reduced when compared to the wild-type, while overexpression increased their number and length. An auto-activation test with various truncated forms of H2 using yeast two-hybrid (Y2H) suggested that H2 acts as a transcriptional regulator or co-activator and that its N-terminal region is important for auto-activation. Y2H and pull-down analyses showed that H2 interacts with Woolly (Wo), which regulates the development of type I trichomes in tomato. Luciferase complementation imaging assays confirmed that they had direct interactions, implying that H2 and Wo function together to regulate the development of trichomes. These results suggest that H2 has a role in the initiation and elongation of type I trichomes in tomato.


Asunto(s)
Dedos de Zinc CYS2-HIS2/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Tallos de la Planta/crecimiento & desarrollo , Solanum lycopersicum/genética , Tricomas/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tricomas/genética
11.
Plant Dis ; 105(10): 2771-2775, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33973809

RESUMEN

Tomato spotted wilt virus (TSWV) is a destructive viral pathogen in various crops, including pepper. Although the single dominant gene Tsw has been utilized in pepper breeding to confer resistance to TSWV, the occurrence of TSWV variants that overcome Tsw-mediated resistance has been reported in various countries after several years of growing resistant cultivars. In this study, we determined the complete genome sequence of a resistance-breaking TSWV variant (TSWV-YI) that recently emerged in pepper in South Korea. TSWV-YI infected all of the resistant pepper cultivars tested. The phylogenetic and recombination analyses of the complete TSWV-YI genome sequence showed that it is a reassortant that acquired its L and M RNA segments from the existing South Korean TSWV population and its S RNA in an isolate from another country. Given that TSWV-YI is a resistance-breaking variant, it appears that reassortment of the S RNA led to the emergence of this variant that breaks the Tsw gene in pepper grown in South Korea. Our results suggest that resistance-breaking TSWV variants are a potential threat to pepper production in South Korea and that strategies to manage these variants should be developed to ensure sustainable pepper production.


Asunto(s)
Tospovirus , Filogenia , Fitomejoramiento , Enfermedades de las Plantas , Análisis de Secuencia de ADN , Tospovirus/genética
13.
Virus Evol ; 6(2): veaa070, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33240527

RESUMEN

Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.

14.
Plant Physiol ; 181(3): 867-880, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31481630

RESUMEN

While pepper (Capsicum annuum) is a highly recalcitrant species for genetic transformation studies, plant virus-based vectors can provide alternative and powerful tools for transient regulation and functional analysis of genes of interest in pepper. In this study, we established an effective virus-based vector system applicable for transient gain- and loss-of-function studies in pepper using Broad bean wilt virus2 (BBWV2). We engineered BBWV2 as a dual gene expression vector for simultaneous expression of two recombinant proteins in pepper cells. In addition, we established enhanced and stable expression of recombinant proteins from the BBWV2-based dual vector via coexpression of a heterologous viral suppressor of RNA silencing. We also developed a BBWV2-based virus-induced gene silencing (VIGS) vector, and we successfully silenced the phytoene desaturase gene (PDS) using the BBWV2-based VIGS vector in various pepper cultivars. Additionally, we optimized the BBWV2-based VIGS system in pepper by testing the efficiency of PDS gene silencing under different conditions. This BBWV2-based vector system represents a convenient approach for rapid and simple analysis of gene functions in pepper.


Asunto(s)
Capsicum/genética , Vectores Genéticos/genética , Virus de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Fenotipo , Nicotiana/genética
15.
Plant Pathol J ; 34(6): 532-543, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30588226

RESUMEN

Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.

16.
Viruses ; 10(11)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355968

RESUMEN

Extreme resistance (ER) is a type of R-gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical R-resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The Rsv3 gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding ß-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Glycine max/genética , Glycine max/virología , Potyvirus/fisiología , Autofagia , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , ARN Interferente Pequeño/genética , Transducción de Señal , Glycine max/metabolismo
17.
Plant Pathol J ; 34(5): 451-457, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30369855

RESUMEN

The Sweet potato chlorotic fleck virus (SPCFV), of the genus Carlavirus (family Betaflexiviridae), was first detected as one of several viruses infecting sweet potatoes (Ipomea batatas L.) in Korea. Out of 154 sweet potato samples collected in 2012 that were showing virus-like symptoms, 47 (31%) were infected with SPCFV, along with other viruses. The complete genome sequences of four SPCFV isolates were determined and analyzed using previously reported genome sequences. The complete genomes were found to contain 9,104-9,108 nucleotides, excluding the poly-A tail, containing six putative open reading frames (ORFs). Further, the SPCFV Korean isolates were divided into two groups (Group I and Group II) by phylogenetic analysis based on the complete nucleotide sequences; Group I and Group II had low nucleotide sequence identities of about 73%. For the first time, we determined the complete genome sequence for the Group II SPCFV isolates. The amino acid sequence identity in coat proteins (CP) between the two groups was over 90%, whereas the amino acid sequence identity in other proteins was less than 80%. In addition, SPCFV Korean isolates had a low amino acid sequence identity (61% CPs and 47% in the nucleotide- binding protein [NaBp] region) to that of Melon yellowing-associated virus (MYaV), a typical Carlavirus.

18.
PLoS One ; 13(10): e0206382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30346992

RESUMEN

An unusual novel plant virus provisionally named goji berry chlorosis virus (GBCV) was isolated from goji berry plants (Lycium chinense Miller) showing chlorosis symptoms and its complete genome sequence was determined. The viral genome consists of a positive-sense single-stranded RNA of 10,100 ribonucleotides and contains six open reading frames (ORFs). Electron microscopy showed that the viral genome is packaged as a filamentous particle with an average length of approximately 850 nm. Phylogenetic analysis and amino acid similarity analysis of the encoded ORFs revealed that this new virus could be classified in an intermediate position between the families Benyviridae and Virgaviridae. The GBCV 200-kDa replicase (ORF1) is more similar to benyvirus replicases than to virgavirus replicases, while its 17-kDa coat protein (CP, ORF2) is more closely related with virgavirus CPs than benyvirus CPs. ORF3 was predicted to produce a C-terminally extended protein from ORF2 via frameshifting. While ORF4 (45-kDa), ORF5 (44-kDa), and ORF6 (16-kDa) have no apparent sequence homology with other known viruses, ORF5 is predicted to encode a movement protein (MP) that is phylogenetically related to the furovirus MP and ORF6 was experimentally proven to encode a viral suppressor of RNA silencing. These unusual characteristics suggest that GBCV may represent an evolutionary link between the families Benyviridae and Virgaviridae and indicate the existence of a novel, unidentified virus group.


Asunto(s)
Lycium/virología , Virus ARN/genética , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Microscopía Electrónica , Sistemas de Lectura Abierta/genética , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN
19.
PLoS One ; 13(8): e0202174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30102735

RESUMEN

Sweet potato is a vegetatively propagated crop that is produced for both growth in Korean fields and for export out of the country. The viruses that are present in introduced sweet potatoes can spread both domestically and to foreign countries. Determining the time and path of virus movement could help curtail its spread and prevent future dispersal of related viruses. Determining the consequences of past virus and sweet potato dispersal could provide insight into the ecological and economic risks associated with other sweet potato-infecting viral invasions. We therefore applied Bayesian phylogeographic inferences and recombination analyses of the available Sweepovirus sequences (including 25 Korean Sweepovirus genomes) and reconstructed a plausible history of Sweepovirus diversification and movement across the globe. The Mediterranean basin and Central America were found to be the launchpad of global Sweepovirus dispersal. Currently, China and Brazil are acting as convergence regions for Sweepoviruses. Recently reported Korean Sweepovirus isolates were introduced from China in a recent phase and the regions around China and Brazil continue to act as centers of Sweepovirus diversity and sites of ongoing Sweepovirus evolution. The evidence indicates that the region is an epidemiological hotspot, which suggests that novel Sweepovirus variants might be found.


Asunto(s)
Begomovirus/genética , Genoma Viral , Ipomoea batatas/virología , Begomovirus/aislamiento & purificación , Producción de Cultivos , Filogenia , Filogeografía , Enfermedades de las Plantas/genética , Recombinación Genética , República de Corea , Análisis Espacial
20.
Plant Pathol J ; 34(3): 199-207, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29887776

RESUMEN

Tomato chlorosis virus (ToCV) is a whitefly-transmitted and phloem-limited crinivirus. In 2013, severe interveinal chlorosis and bronzing on tomato leaves, known symptoms of ToCV infection, were observed in greenhouses in Korea. To identify ToCV infection in symptomatic tomato plants, RT-PCR with ToCV-specific primers was performed on leaf samples collected from 11 tomato cultivating areas where ToCV-like symptoms were observed in 2013 and 2014. About half of samples (45.18%) were confirmed as ToCV-infected, and the complete genome of 10 different isolates were characterized. This is the first report of ToCV occurring in Korea. The phylogenetic relationship and genetic variation among ToCV isolates from Korea and other countries were also analysed. When RNA1 and RNA2 are analysed separately, ToCV isolates were clustered into three groups in phylogenetic trees, and ToCV Korean isolates were confirmed to belong to two groups, which were geographically separated. These results suggested that Korean ToCV isolates originated from two independent origins. However, the RNA1 and RNA2 sequences of the Yeonggwang isolate were confirmed to belong to different groups, which indicated that ToCV RNA1 and RNA2 originated from two different origins and were reassorted in Yeonggwang, which is the intermediate point of two geographically separated groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...