Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article En | MEDLINE | ID: mdl-37511013

In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to delayed reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered. An additional finding is that the repeated hypoxia rats were not hyperactive in the widely used open field test, which is not ADHD specific. Hence, it is recommended that ADHD-like hyperactivity and ADHD-like impulsivity, specifically in response to delayed reward, be a primary component in the design of future experiments that characterize potential animal models of ADHD, replacing open field testing of hyperactivity. Unknown is whether death and/or activity of midbrain dopaminergic neurons contributed to the ADHD-like hyperactivity/impulsivity detected after delayed reward. Hence, we stereologically measured the absolute number of dopaminergic neurons in four midbrain subregions and the average somal/nuclear volume of those neurons. Repeated hypoxia rats had a significant specific loss of dopaminergic neurons in the right ventral tegmental area (VTA) at 2 weeks of age and 18 months of age, providing new evidence of a site of pathology. No dopaminergic neuronal loss occurred in three other midbrain regions. Fewer VTA dopaminergic neurons correlated with increased ADHD-like hyperactivity and impulsivity. Novel early intervention therapies to rescue VTA dopaminergic neurons and potentially prevent ADHD-like hyperactivity/impulsivity can now be investigated.


Attention Deficit Disorder with Hyperactivity , Dopaminergic Neurons , Rats , Animals , Male , Dopaminergic Neurons/physiology , Rats, Sprague-Dawley , Ventral Tegmental Area , Reward , Impulsive Behavior , Hypoxia
2.
J Comp Neurol ; 529(18): 3946-3973, 2021 12.
Article En | MEDLINE | ID: mdl-34338311

To develop new therapies for schizophrenia, evidence accumulated over decades highlights the essential need to investigate the GABAergic synapses that presynaptically influence midbrain dopaminergic neurons. Since current technology restricts these studies to animals, and evidence accumulated in recent decades indicates a developmental origin of schizophrenia, we investigated synaptic changes in male rat offspring exposed to maternal immune activation (MIA), a schizophrenia risk factor. Using a novel combination of lentiviruses, peroxidase-immunogold double labeling, three-dimensional serial section transmission electron microscopy and stereology, we observed clear anatomical alterations in synaptic inputs on dopaminergic neurons in the midbrain posterior ventral tegmental area (pVTA). These changes relate directly to a characteristic feature of schizophrenia: increased dopamine release. In 3-month-old and 14-month-old MIA rats, we found a marked decrease in the volume of presynaptic GABAergic terminals from the rostromedial tegmental nucleus (RMTg) and in the length of the synapses they made, when innervating pVTA dopaminergic neurons. In MIA rats in the long-term, we also discovered a decrease in the volume of the postsynaptic density (PSD) and in the maximum thickness of the PSD at the same synapses. These marked deficits were evident in conventional GABA-dopamine synapses and in synaptic triads that we discovered involving asymmetric synapses that innervated RMTg GABAergic presynaptic terminals, which in turn innervated pVTA dopaminergic neurons. In triads, the PSD thickness of asymmetric synapses was significantly decreased in MIA rats in the long-term cohort. The extensive anatomical deficits provide a potential basis for new therapies targeted at synaptic inputs on midbrain pVTA dopaminergic neurons, in contrast to current striatum-targeted antipsychotic drugs.


Dopaminergic Neurons/physiology , GABAergic Neurons/physiology , Presynaptic Terminals/metabolism , Schizophrenia/physiopathology , Synapses/metabolism , Ventral Tegmental Area/metabolism , Animals , Male , Microscopy, Electron, Transmission , Rats , Risk Factors
3.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article En | MEDLINE | ID: mdl-34360638

Perinatal hypoxia-ischemia (HI) is a major cause of striatal injury. Delayed post-treatment with adult-sourced bone marrow-derived mesenchymal stem cells (BMSCs) increased the absolute number of striatal medium-spiny neurons (MSNs) following perinatal HI-induced brain injury. Yet extraction of BMSCs is more invasive and difficult compared to extraction of adipose-derived mesenchymal stem cells (AD-MSCs), which are easily sourced from subcutaneous tissue. Adult-sourced AD-MSCs are also superior to BMSCs in the treatment of adult ischemic stroke. Therefore, we investigated whether delayed post-treatment with adult-sourced AD-MSCs increased the absolute number of striatal MSNs following perinatal HI-induced brain injury. This included investigation of the location of injected AD-MSCs within the brain, which were widespread in the dorsolateral subventricular zone (dlSVZ) at 1 day after their injection. Cells extracted from adult rat tissue were verified to be stem cells by their adherence to tissue culture plastic and their expression of specific 'cluster of differentiation' (CD) markers. They were verified to be AD-MSCs by their ability to differentiate into adipocytes and osteocytes in vitro. Postnatal day (PN) 7/8, male Sprague-Dawley rats were exposed to either HI right-sided brain injury or no HI injury. The HI rats were either untreated (HI + Diluent), single stem cell-treated (HI + MSCs×1), or double stem cell-treated (HI + MSCs×2). Control rats that were matched-for-weight and litter had no HI injury and were treated with diluent (Uninjured + Diluent). Treatment with AD-MSCs or diluent occurred either 7 days, or 7 and 9 days, after HI. There was a significant increase in the absolute number of striatal dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-positive MSNs in the double stem cell-treated (HI + MSCs×2) group and the normal control group compared to the HI + Diluent group at PN21. We therefore investigated two potential mechanisms for this effect of double-treatment with AD-MSCs. Specifically, did AD-MSCs: (i) increase the proliferation of cells within the dlSVZ, and (ii) decrease the microglial response in the dlSVZ and striatum? It was found that a primary repair mechanism triggered by double treatment with AD-MSCs involved significantly decreased striatal inflammation. The results may lead to the development of clinically effective and less invasive stem cell therapies for neonatal HI brain injury.


Corpus Striatum/cytology , Hypoxia-Ischemia, Brain/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Adult Stem Cells/physiology , Animals , Animals, Newborn , Male , Rats , Rats, Sprague-Dawley , Time-to-Treatment
4.
Neuroreport ; 28(18): 1255-1260, 2017 Dec 13.
Article En | MEDLINE | ID: mdl-29099440

Absence seizures are known to originate from disruptions within the corticothalamocortical network; however, the precise underlying cellular and molecular mechanisms that induce hypersynchronicity and hyperexcitability are debated and likely to be complex and multifactorial. Recent studies implicate impaired thalamic GABAergic inhibition as a common feature in multiple animal models of absence epilepsy, including the well-established stargazer mouse model. Recently, we demonstrated region-specific increases in the whole tissue and synaptic levels of GABAA receptor (GABAAR) subunits α1 and ß2, within the ventral posterior region of the thalamus in adult epileptic stargazer mice compared with nonepileptic control littermates. The objective of this study was to investigate whether such changes in GABAAR subunits α1 and ß2 can be observed before the initiation of seizures, which occur around postnatal (PN) days 16-18 in stargazers. Semiquantitative western blotting was used to analyze the relative tissue level expression of GABAAR α1 and ß2 subunits in the thalamus of juvenile stargazer mice compared with their nonepileptic control littermates at three different time points before the initiation of seizures. We show that there is a statistically significant increase in the expression of α1 and ß2 subunits in the thalamus of stargazer mice, at the PN7-9 stage, compared with the control littermates, but not at PN10-12 and PN13-15 stages. These results suggest that an aberrant expression of GABAAR subunits α1 and ß2 in the stargazers does not occur immediately before seizure onset and therefore is unlikely to directly contribute to the initiation of absence seizures.


Calcium Channels/genetics , Epilepsy, Absence , Mutation/genetics , Receptors, GABA-A/metabolism , Thalamus/metabolism , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Epilepsy, Absence/genetics , Epilepsy, Absence/metabolism , Epilepsy, Absence/pathology , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Neurologic Mutants , Protein Subunits/metabolism , Thalamus/growth & development
5.
Epilepsia ; 55(2): 224-32, 2014 Feb.
Article En | MEDLINE | ID: mdl-24417662

PURPOSE: Absence seizures, also known as petit mal seizures, arise from disruptions within the cortico-thalamocortical network. Interconnected circuits within the thalamus consisting of inhibitory neurons of the reticular thalamic nucleus (RTN) and excitatory relay neurons of the ventral posterior (VP) complex, generate normal intrathalamic oscillatory activity. The degree of synchrony in this network determines whether normal (spindle) or pathologic (spike wave) oscillations occur; however, the cellular and molecular mechanisms underlying absence seizures are complex and multifactorial and currently are not fully understood. Recent experimental evidence from rodent models suggests that regional alterations in γ-aminobutyric acid (GABA)ergic inhibition may underlie hypersynchronous oscillations featured in absence seizures. The aim of the current study was to investigate whether region-specific differences in GABAA receptor (GABAAR) subunit expression occur in the VP and RTN thalamic regions in the stargazer mouse model of absence epilepsy where the primary deficit is in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression. METHODS: Immunofluorescence confocal microscopy and semiquantitative Western blot analysis were used to investigate region-specific changes in GABAAR subunits in the thalamus of the stargazer mouse model of absence epilepsy to determine whether changes in GABAergic inhibition could contribute to the mechanisms underlying seizures in this model of absence epilepsy. KEY FINDINGS: Immunofluorescence confocal microscopy revealed that GABAAR α1 and ß2 subunits are predominantly expressed in the VP, whereas α3 and ß3 subunits are localized primarily in the RTN. Semiquantitative Western blot analysis of VP and RTN samples from epileptic stargazers and their nonepileptic littermates showed that GABAAR α1 and ß2 subunit expression levels in the VP were significantly increased (α1: 33%, ß2: 96%) in epileptic stargazers, whereas α3 and ß3 subunits in the RTN were unchanged in the epileptic mice compared to nonepileptic control littermates. SIGNIFICANCE: These findings suggest that region-specific differences in GABAAR subunits in the thalamus of epileptic mice, specifically up-regulation of GABAARs in the thalamic relay neurons of the VP, may contribute to generation of hypersynchronous thalamocortical activity in absence seizures. Understanding region-specific differences in GABAAR subunit expression could help elucidate some of the cellular and molecular mechanisms underlying absence seizures and thereby identify targets by which drugs can modulate the frequency and severity of epileptic seizures. Ultimately, this information could be crucial for the development of more specific and effective therapeutic drugs for treatment of this form of epilepsy.


Calcium Channels/biosynthesis , Disease Models, Animal , Epilepsy, Absence/metabolism , Receptors, GABA-A/biosynthesis , Receptors, GABA/biosynthesis , Thalamus/metabolism , Animals , Calcium Channels/genetics , Epilepsy, Absence/genetics , Gene Expression Regulation , Male , Mice , Protein Subunits/biosynthesis , Protein Subunits/genetics , Receptors, GABA/genetics , Receptors, GABA-A/genetics , Ventral Thalamic Nuclei/metabolism
...