Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207622

RESUMEN

Self-powered wireless sensor systems have emerged as an important topic for condition monitoring in nuclear power plants. However, commercial wireless sensor systems still cannot be fully self-sustainable due to the high power consumption caused by excessive signal processing in a mini-electronic computing system. In this sense, it is essential not only to integrate the sensor system with energy-harvesting devices but also to develop simple data processing methods for low power schemes. In this paper, we report a patch-type vibration visualization (PVV) sensor system based on the triboelectric effect and a visualization technique for self-sustainable operation. The PVV sensor system composed of a polyethylene terephthalate (PET)/Al/LCD screen directly converts the triboelectric signal into an informative black pattern on the LCD screen without excessive signal processing, enabling extremely low power operation. In addition, a proposed image processing method reconverts the black patterns to frequency and acceleration values through a remote-control camera. With these simple signal-to-pattern conversion and pattern-to-data reconversion techniques, a vibration visualization sensor network has successfully been demonstrated.


Asunto(s)
Suministros de Energía Eléctrica , Nanotecnología , Electrónica , Procesamiento de Señales Asistido por Computador , Vibración
2.
Micromachines (Basel) ; 12(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562424

RESUMEN

The spread of wearable and flexible electronics devices has been accelerating in recent years for a wide range of applications. Development of an appropriate flexible power source to operate these flexible devices is a key challenge. Supercapacitors are attractive for powering portable lightweight consumer devices due to their long cycle stability, fast charge-discharge cycle, outstanding power density, wide operating temperatures and safety. Much effort has been devoted to ensure high mechanical and electrochemical stability upon bending, folding or stretching and to develop flexible electrodes, substrates and overall geometrically-flexible structures. Supercapacitors have attracted considerable attention and shown many applications on various scales. In this review, we focus on flexible structural design under six categories: paper-like, textile-like, wire-like, origami, biomimetics based design and micro-supercapacitors. Finally, we present our perspective of flexible supercapacitors and emphasize current technical difficulties to stimulate further research.

3.
Materials (Basel) ; 14(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435423

RESUMEN

Supercapacitors prepared by printing allow a simple manufacturing process, easy customization, high material efficiency and wide substrate compatibility. While printable active layers have been widely studied, printable electrolytes have not been thoroughly investigated despite their importance. A printable electrolyte should not only have high ionic conductivity, but also proper viscosity, small particle size and chemical stability. Here, gel-polymer electrolytes (GPE) that are compatible with printing were developed and their electrochemical performance was analyzed. Five GPE formulations based on various polymer-conductive substance combinations were investigated. Among them, GPE made of polyvinylidene difluoride (PVDF) polymer matrix and LiClO4 conductive substance exhibited the best electrochemical performance, with a gravimetric capacitance of 176.4 F/g and areal capacitance of 152.7 mF/cm2 at a potential scan rate of 10 mV/s. The in-depth study of the in-plane solid-state supercapacitors based on various printed GPEs suggests that printable electrolytes provide desirable attributes for high-performance printed energy devices such as supercapacitors, batteries, fuel cells and dye-sensitized solar cells.

4.
Nanoscale Adv ; 3(6): 1725-1729, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36132552

RESUMEN

A nanoscale field emission vacuum channel gated diode structure is proposed and a tungsten cathode with an umbrella-like geometry and sharp vertical edge is fabricated. The edge of the suspended cathode becomes the field emission surface. Unlike in the traditional transistor with the gate typically located between the source and the drain, the bottom silicon plate becomes the gate here and the anode terminal is located between the umbrella cathode and the gate. The fabricated devices show excellent diode characteristics and the gated diode structure is attractive for extremely low gate leakage.

5.
ACS Sens ; 5(4): 1028-1032, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32200620

RESUMEN

An all three-dimensional (3D)-printed flexible ZnO ultraviolet (UV) photodetector is demonstrated, where the 3D-printing method is used not only for the electrode and photosensitive material but also for creating a substrate. An ultraflat and flexible substrate capable of serving as the backbone layer is developed using a water-dissolvable polymer layer for surface planarization. A two-layered printing followed by surface treatment is demonstrated for the substrate preparation. As mechanical support but flexible, a thick and sparse thermoplastic polyurethane layer is printed. On its surface, a thin and dense poly(vinyl alcohol) (PVA) is then printed. A precise control of PVA reflow using a microwater droplet results in a flexible and extremely uniform substrate. A Cu-Ag nanowire network is directly 3D printed on the flexible substrate for the conducting layer, followed by ZnO for the photosensitive material. Unlike the planar two-dimensional printing that provides thin films, 3D printing allows the electrode to have a step height, which can be made like a dam to accommodate a thick film of ZnO. Photosensitivity as a function of various ZnO thickness values was investigated to establish an optimal thickness for UV response. The device was also tested in natural sunlight along with stability and reliability.


Asunto(s)
Óxido de Zinc/química , Impresión Tridimensional , Rayos Ultravioleta
6.
Adv Healthc Mater ; 9(4): e1901575, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31945277

RESUMEN

Thermotherapy is an effective method for pain relief, recovery from injury, and general healthcare. The ordinary heat pad used for thermotherapy at home is not usually tailored to the individual but supplied in a few different pre-fixed sizes and shapes for mass marketing. A customized wearable heat pad often requires expert support. Herein, an instant, custom-fit, and on-demand heat pad for thermotherapy is demonstrated. The heater is directly printed using silver nanoparticle ink on an off-the-shelf medical grade tape by inkjet technology. By coating the tape with silica nanoparticles as ink-absorbing layer and chloride ions as chemical sintering agent, stable heater patterns are printed without the need for subsequent high temperature sintering process. A 3D scanner is used to acquire body information, and a customized heater is produced using the information. The printed heat pad is attached to the shoulder and the effect of thermotherapy is verified objectively through electroencephalography and subjectively through survey. This printed heat pad produced by simple and low-cost fabrication provides wearable medical devices for personal thermotherapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Impresión Tridimensional , Plata
7.
ACS Sens ; 4(4): 1097-1102, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30848593

RESUMEN

A single walled carbon nanotube (SWCNT) based γ ray detector is demonstrated without a conventional scintillation mechanism. The change in the conductance of a two terminal SWCNT resistor in response to γ ray exposure is exploited as a sensing mechanism. Radiation-induced ambient oxygen dissociation and subsequent adsorption of oxygen species on the SWCNT surface alter its electrical properties. The responses to the total dose and dose rate are investigated along with the sensing mechanism. The detector showed good sensitivity to γ ray and a capability to distinguish radiation dose rates ranging from 2.4 to 16.4 R/min.


Asunto(s)
Rayos gamma , Nanotubos de Carbono/química , Radiometría/métodos , Adsorción , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Microcomputadores , Ozono/química , Radiometría/instrumentación
8.
Nanoscale Adv ; 1(8): 2990-2998, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133608

RESUMEN

A method to electrically induce memristor performance from inkjet-printed silver (Ag) nanoparticles is presented, which is effective on a specifically designed hourglass-shaped Ag metal device. Joule heating-induced oxidation in the bottleneck region, when applying a high current to the device, results in a metal-electrolyte-metal structure produced from just a single metal ink for the memristor operation. This electrically induced memristor shows a nonuniform dispersion of the Ag nanoparticles within the oxide electrolyte layer, depending on the bias polarity adopted during the initial metal rupture process. A versatile and useful range of controllable memristor behaviors, from volatile threshold switching to nonvolatile unipolar as well as bipolar resistive switching, are observed based on the reversible rejuvenation and rupture of the Ag nanofilaments according to the Ag cation migration within the oxide electrolyte. The interplay between the electric field induced redox reaction and thermal diffusion of the Ag nanoparticles constitutes the primary reason for the different switching behaviors, further supported by thermo-field simulation results. The bipolar switching memristor demonstrates reliable endurance even under harsh DC switching conditions with low power consumption compared with its unipolar switching operation. The observed range of controllable switching behavior can be exploited for future low power flexible memory, as a selector in crossbar memory architecture, synaptic learning, and others.

9.
ACS Appl Mater Interfaces ; 10(46): 40198-40202, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30394726

RESUMEN

A fabric-compatible UV sensor is presented using a cellulose-based thread coated with single-wall carbon nanotube ink. Two-terminal resistive responses of the thread were measured upon exposure to UV, and the effects of intensity, wavelength, and on/off cycling were studied. The sensor was tested in the field under direct sunlight, demonstrating practical usability for a wearable/flexible UV sensor system. The results here confirm the potential for an inexpensive wearable sensor in contrast to the conventional rigid and bulky solid-state detectors.

10.
ACS Sens ; 3(9): 1782-1788, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30146873

RESUMEN

Successful transition to commercialization and practical implementation of nanotechnology innovations may very well need device designs that are tolerant to the inherent variations and imperfections in all nanomaterials including carbon nanotubes, graphene, and others. As an example, a single-walled carbon nanotube network based gas sensor is promising for a wide range of applications such as environment, industry, and biomedical and wearable devices due to its high sensitivity, fast response, and low power consumption. However, a long-standing issue has been the production of extremely high purity semiconducting nanotubes, thereby contributing to the delay in the market adoption of those sensors. Inclusion of even less than 0.1% of metallic nanotubes, which is inevitable, is found to result in a significant deterioration of sensor-to-sensor uniformity. Acknowledging the coexistence of metallic and semiconducting nanotubes as well as all other possible imperfections, we herein present a novel variation-tolerant sensor design where the sensor response is defined by a statistical Gaussian measure in contrast to a traditional deterministic approach. The single input and multiple output data are attained using multiport electrodes fabricated over a relatively large area single nanotube ensemble. The data processing protocol discards outlier data points and the origin of the outliers is investigated. Both the experimental demonstration and complementary analytical modeling support the hypothesis that the statistical analysis of the device can strengthen the credibility of the sensor constructed using nanomaterials with any imperfections. The proposed strategy can also be applied to physical, radiation, and biosensors as well as other electronic devices.


Asunto(s)
Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Amoníaco/análisis , Interpretación Estadística de Datos , Técnicas Electroquímicas/instrumentación , Electrodos , Gases/análisis
11.
Sci Rep ; 6: 38324, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917910

RESUMEN

We report the transient memory device by means of a water soluble SSG (solid sodium with glycerine) paper. This material has a hydroscopic property hence it can be soluble in water. In terms of physical security of memory devices, prompt abrogation of a memory device which stored a large number of data is crucial when it is stolen because all of things have identified information in the memory device. By utilizing the SSG paper as a substrate, we fabricated a disposable resistive random access memory (RRAM) which has good data retention of longer than 106 seconds and cycling endurance of 300 cycles. This memory device is dissolved within 10 seconds thus it can never be recovered or replicated. By employing direct printing but not lithography technology to aim low cost and disposable applications, the memory capacity tends to be limited less than kilo-bits. However, unlike high memory capacity demand for consumer electronics, the proposed device is targeting for security applications. With this regards, the sub-kilobit memory capacity should find the applications such as one-time usable personal identification, authentication code storage, cryptography key, and smart delivery tag. This aspect is attractive for security and protection system against unauthorized accessibility.

12.
ACS Appl Mater Interfaces ; 8(36): 23820-6, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552134

RESUMEN

An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

13.
Sci Rep ; 6: 26121, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27184121

RESUMEN

Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm(2) V(-1) sec(-)1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 10(4)), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

14.
Nanoscale ; 8(16): 8878-86, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27071328

RESUMEN

Developing a well-defined nanostructure that can provide strong, reproducible, and stable SERS signals is quite important for the practical application of surface-enhanced Raman scattering (SERS) sensors. We report here a novel single nanowire (NW) on graphene (SNOG) structure as an efficient, reproducible, and stable SERS-active platform. Au NWs having a well-defined single-crystal geometry on a monolayer graphene-coated metal film can form a well-defined, continuous nanogap structure that provides extremely reproducible and stable SERS signals. The in-NW reproducibility was verified by 2-dimensional Raman mapping, and the NW-to-NW reproducibility was verified by the cumulative curves of 32 SERS spectra. The simulation also indicated that a highly regular, line-shaped hot spot formed between the Au NW and graphene. Furthermore, SNOG platforms showed improved photostability and long-term oxidation immunity. We anticipate that SNOG platforms will be appropriate for practical biological and chemical sensor applications that demand reproducible, stable, and strong signal production.

15.
Sci Rep ; 6: 19314, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26782708

RESUMEN

The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3-dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy.

16.
Sci Rep ; 5: 16409, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26553524

RESUMEN

A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 µA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running.


Asunto(s)
Suministros de Energía Eléctrica , Modelos Teóricos , Humanos
17.
Sci Rep ; 5: 13866, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365054

RESUMEN

A triboelectric nanogenerator composed of gold nanoflowers is demonstrated. The proposed triboelectric nanogenerator creates electricity by contact-separation-based electrification between an anodic metal and a cathodic polymer. For the improvement of output power via the enlargement of the effective surface area in the anodic metal, gold nanoflowers that produce a hierarchical morphology at a micro-to-nano scale by electrodeposition are utilized. The hierarchical morphology is controlled by the applied voltage and deposition time. Even though the triboelectric coefficient of gold is inferior to those of other metals, gold is very attractive to make a flower-like structure by electrodeposition. Moreover, gold is stable against oxidation by oxygen in air. From a reliability and practicality point of view, the aforementioned stability against oxidation is preferred.

18.
Nanoscale ; 6(14): 7799-804, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24892839

RESUMEN

A mechanical and electrical transistor structure (METS) is proposed for effective voltage scaling. The sub-2 nm nanogap by atomic layer deposition (ALD) without stiction and the application of a dielectric with high-permittivity allowed the pull-in voltage of sub-2 V, showing the strength of the mechanical actuation that is hard to realize in a typical complementary metal-oxide-semiconductor (CMOS) transistor. The results are verified by simulation and interpreted by the numerical equation. Therefore the METS can pave a new way to make a breakthrough to overcome the limits of CMOS technology.

19.
Small ; 10(19): 3887-94, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24912667

RESUMEN

Triboelectric nanogenerators with nature-replicated interface structures are presented. Effective contact areas of the triboelectric surfaces are largely enhanced because of the densely packed nano-in-micro hierarchical structures in nature. The enlarged contact area causes stronger triboelectric charge density, which results in output power increment. The interface engineering also allows the improved humidity resistance, which is an important parameter for the stable energy harvesting.


Asunto(s)
Materiales Biomiméticos , Suministros de Energía Eléctrica , Nanotecnología , Animales , Dimetilpolisiloxanos/química , Electroquímica , Electrodos , Diseño de Equipo , Hemípteros , Humanos , Humedad , Microscopía Electrónica de Rastreo , Oscilometría , Hojas de la Planta/metabolismo , Polímeros/química , Propiedades de Superficie , Temperatura , Alas de Animales/patología
20.
ACS Nano ; 7(12): 10773-9, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24255989

RESUMEN

The piezoelectric nanogenerator (PNG) has been spotlighted as a promising candidate for use as a sustainable power source in wireless system applications. For the further development of PNGs, structural optimization is essential, but the structural analysis progress in this area has been scant. In the present study, we proposed a PNG with a well-ordered nanoshell array structure. The nanoshell structure has been considered as an effective core nanostructure for PNGs due to its effective stress confinement effect but has not been experimentally introduced thus far due to the challenging fabrication method required. To produce a controllable nanoshell structure, a top-down silicon nanofabrication technique which involves advanced spacer lithography is introduced. A comprehensive design strategy to enhance the piezoelectric performance is proposed in terms of the nanoshell diameter and shell-to-shell space. Both simulated and measured data confirm that an extremely high density of a structure is not always the best answer to maximize the performance. The highest amount of power can be achieved when the shell diameter and shell-to-shell space are within their proper ranges. The structural design strategy studied in this work provides a guideline for the further structural developments of PNG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...