Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 45: 606-614, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31272902

RESUMEN

BACKGROUND: Ear and mastoid disease can easily be treated by early detection and appropriate medical care. However, short of specialists and relatively low diagnostic accuracy calls for a new way of diagnostic strategy, in which deep learning may play a significant role. The current study presents a machine learning model to automatically diagnose ear disease using a large database of otoendoscopic images acquired in the clinical environment. METHODS: Total 10,544 otoendoscopic images were used to train nine public convolution-based deep neural networks to classify eardrum and external auditory canal features into six categories of ear diseases, covering most ear diseases (Normal, Attic retraction, Tympanic perforation, Otitis externa±myringitis, Tumor). After evaluating several optimization schemes, two best-performing models were selected to compose an ensemble classifier, by combining classification scores of each classifier. FINDINGS: According to accuracy and training time, transfer learning models based on Inception-V3 and ResNet101 were chosen and the ensemble classifier using the two models yielded a significant improvement over each model, the accuracy of which is in average 93·67% for the 5-folds cross-validation. Considering substantial data-size dependency of classifier performance in the transfer learning, evaluated in this study, the high accuracy in the current model is attributable to the large database. INTERPRETATION: The current study is unprecedented in terms of both disease diversity and diagnostic accuracy, which is compatible or even better than an average otolaryngologist. The classifier was trained with data in a various acquisition condition, which is suitable for the practical environment. This study shows the usefulness of utilizing a deep learning model in the early detection and treatment of ear disease in the clinical situation. FUND: This research was supported by Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(NRF-2017M3C7A1049051).


Asunto(s)
Aprendizaje Profundo , Enfermedades del Oído/diagnóstico , Endoscopía/métodos , Algoritmos , Bases de Datos Factuales , Enfermedades del Oído/diagnóstico por imagen , Enfermedades del Oído/patología , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Membrana Timpánica/diagnóstico por imagen , Membrana Timpánica/patología
2.
Front Neuroinform ; 12: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034333

RESUMEN

In machine learning, one of the most popular deep learning methods is the convolutional neural network (CNN), which utilizes shared local filters and hierarchical information processing analogous to the brain's visual system. Despite its popularity in recognizing two-dimensional (2D) images, the conventional CNN is not directly applicable to semi-regular geometric mesh surfaces, on which the cerebral cortex is often represented. In order to apply the CNN to surface-based brain research, we propose a geometric CNN (gCNN) that deals with data representation on a mesh surface and renders pattern recognition in a multi-shell mesh structure. To make it compatible with the conventional CNN toolbox, the gCNN includes data sampling over the surface, and a data reshaping method for the convolution and pooling layers. We evaluated the performance of the gCNN in sex classification using cortical thickness maps of both hemispheres from the Human Connectome Project (HCP). The classification accuracy of the gCNN was significantly higher than those of a support vector machine (SVM) and a 2D CNN for thickness maps generated by a map projection. The gCNN also demonstrated position invariance of local features, which rendered reuse of its pre-trained model for applications other than that for which the model was trained without significant distortion in the final outcome. The superior performance of the gCNN is attributable to CNN properties stemming from its brain-like architecture, and its surface-based representation of cortical information. The gCNN provides much-needed access to surface-based machine learning, which can be used in both scientific investigations and clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA