Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine ; 37: 102448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314870

RESUMEN

Cell-derived vesicles (CDVs) have been investigated as an alternative to exosomes. Here, we generated CDVs from Prokineticin receptor 1 (PROKR1) overexpressing HEK293T cells using micro-extrusion. More than 60 billion PROKR1-enriched CDV (PROKR1Tg CDVs) particles with canonical exosome properties were recovered from 107 cells. With 25 µg/mL of PROKR1Tg CDVs, we observed delivery of PROKR1, significant reduction of apoptosis, and myotube formation in C2C12Prokr1-/- myoblasts that have lost their myogenic potential but underwent apoptosis following myogenic commitment. Expression levels of early and late myogenic marker genes and glucose uptake capacity were restored to equivalent levels with wild-type control. Furthermore, PROKR1Tg CDVs were accumulated in soleus muscle comparable to the liver without significant differences. Therefore, CDVs obtained from genetically engineered cells appear to be an effective method of PROKR1 protein delivery and offer promise as an alternative therapy for muscular dystrophy.


Asunto(s)
Apoptosis/efectos de los fármacos , Micropartículas Derivadas de Células/química , Desarrollo de Músculos/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Animales , Diferenciación Celular/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética
2.
Biomaterials ; 271: 120742, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33706111

RESUMEN

Mesenchymal stem cell (MSC) transplantation is a promising therapy for regenerative medicine. However, MSCs grown under two-dimensional (2D) culture conditions differ significantly in cell shape from those in the body, with downregulated stemness genes and secretion of paracrine factors. Here, we evaluated the effect of 3D culture using Cellhesion VP, a water-insoluble material composed of chitin-based polysaccharide fibers, on the characteristics of human Wharton's jelly-derived MSCs (hMSCs). Cellhesion VP significantly increased cell proliferation after retrieval. Transcriptome analyses suggested that genes involved in cell stemness, migration ability, and extracellular vesicle (EV) production were enhanced by 3D culture. Subsequent biochemical analyses showed that the expression levels of stemness genes including OCT4, NANOG, and SSEA4 were upregulated and migration capacity was elevated in 3D-cultured hMSCs. In addition, EV production was significantly elevated in 3D cells, which contained a distinct protein profile from 2D cells. Gene and drug connectivity analyses revealed that the 2D and 3D EVs had similar functions as immunomodulators; however, 3D EVs had completely distinct therapeutic profiles for various infectious and metabolic diseases based on activation of disease-associated signaling pathways. Therefore, EVs from Cellhesion VP-primed hMSCs offer a new treatment for immune and metabolic diseases.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Gelatina de Wharton , Humanos , Factores Inmunológicos , Medicina Regenerativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...