Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 171(4): 836-848.e13, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28988768

RESUMEN

Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo/patología , Animales , Separación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Obesidad/patología , Canales de Potasio de Dominio Poro en Tándem/genética
2.
Genes Dev ; 30(16): 1822-36, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27566776

RESUMEN

Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or ß-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-ß-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis.


Asunto(s)
Adipocitos Marrones/metabolismo , Glucocorticoides/metabolismo , Histona Demetilasas/metabolismo , Termogénesis/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Adipocitos Marrones/efectos de los fármacos , Tejido Adiposo , Animales , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Metabolismo Energético/genética , Activación Enzimática/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Norepinefrina/farmacología , Oxidación-Reducción , Factores de Transcripción/metabolismo
3.
Med Sci Sports Exerc ; 48(9): 1699-707, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27128665

RESUMEN

INTRODUCTION: Exercise performed with blood flow restriction simultaneously enhances the acute responses to both myogenic and mitochondrial pathways with roles in training adaptation. We investigated isoform-specific gene expression of the peroxisome proliferator-activated receptor gamma coactivator 1 and selected target genes and proteins regulating skeletal muscle training adaptation. METHODS: Nine healthy, untrained males participated in a randomized, counterbalanced, crossover design in which each subject completed a bout of low-intensity endurance exercise performed with blood flow restriction (15 min cycling at 40% of V˙O2peak, BFR-EE), endurance exercise (30 min cycling at 70% of V˙O2peak, EE), or resistance exercise (4 × 10 repetitions of leg press at 70% of one-repetition maximum) separated by at least 1 wk of recovery. A single resting muscle biopsy (vastus lateralis) was obtained 2 wk before the first exercise trial (rest) and 3 h after each bout. RESULTS: Total PGC-1α mRNA abundance, along with all four isoforms, increased above rest with EE only (P < 0.05) being higher than BFR-EE (P < 0.05). PGC-1α1, 2, and 4 were higher after EE compared with resistance exercise (P < 0.05). EE also increased vascular endothelial growth factor, Hif-1α, and MuRF-1 mRNA abundance above rest (P < 0.05), whereas COXIV mRNA expression increased with EE compared with BFR-EE (P < 0.05). CONCLUSION: The attenuated expression of all four PGC-1α isoforms when EE is performed with blood flow restriction suggests this type of exercise provides an insufficient stimulus to activate the signaling pathways governing mitochondrial and angiogenesis responses observed with moderate- to high-intensity EE.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adulto , Estudios Cruzados , Prueba de Esfuerzo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/irrigación sanguínea , Consumo de Oxígeno , Resistencia Física , Isoformas de Proteínas/metabolismo , Flujo Sanguíneo Regional , Entrenamiento de Fuerza , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto Joven
4.
Cell Metab ; 23(3): 454-66, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26876562

RESUMEN

Activation of brown and beige fat can reduce obesity and improve glucose homeostasis through nonshivering thermogenesis. Whether brown or beige fat also secretes paracrine or endocrine factors to promote and amplify adaptive thermogenesis is not fully explored. Here we identify Slit2, a 180 kDa member of the Slit extracellular protein family, as a PRDM16-regulated secreted factor from beige fat cells. In isolated cells and in mice, full-length Slit2 is cleaved to generate several smaller fragments, and we identify an active thermogenic moiety as the C-terminal fragment. This Slit2-C fragment of 50 kDa promotes adipose thermogenesis, augments energy expenditure, and improves glucose homeostasis in vivo. Mechanistically, Slit2 induces a robust activation of PKA signaling, which is required for its prothermogenic activity. Our findings establish a previously unknown peripheral role for Slit2 as a beige fat secreted factor that has therapeutic potential for the treatment of obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Blanco/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Termogénesis , Adipocitos Beige/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/fisiología , Transducción de Señal
5.
Mol Cell Biol ; 33(6): 1210-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23319047

RESUMEN

The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair.


Asunto(s)
Daño del ADN , Replicación del ADN , Lamina Tipo A/deficiencia , Lamina Tipo A/genética , Animales , Línea Celular , Línea Celular Tumoral , Aberraciones Cromosómicas , Reparación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Expresión Génica/genética , Células HEK293 , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga/genética , Humanos , Hidroxiurea/metabolismo , Lamina Tipo A/metabolismo , Células MCF-7 , Ratones , Radiación Ionizante , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA