Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Eur Heart J Digit Health ; 4(5): 420-427, 2023 Oct.
Article En | MEDLINE | ID: mdl-37794872

Aims: It has been demonstrated that several cardiac pathologies, including myocardial ischaemia, can be detected using smartwatch electrocardiograms (ECGs). Correct placement of bipolar chest leads remains a major challenge in the outpatient population. Methods and results: In this feasibility trial, we propose an augmented reality-based smartphone app that guides the user to place the smartwatch in predefined positions on the chest using the front camera of a smartphone. A machine-learning model using MobileNet_v2 as the backbone was trained to detect the bipolar lead positions V1-V6 and visually project them onto the user's chest. Following the smartwatch recordings, a conventional 10 s, 12-lead ECG was recorded for comparison purposes. All 50 patients participating in the study were able to conduct a 9-lead smartwatch ECG using the app and assistance from the study team. Twelve patients were able to record all the limb and chest leads using the app without additional support. Bipolar chest leads recorded with smartwatch ECGs were assigned to standard unipolar Wilson leads by blinded cardiologists based on visual characteristics. In every lead, at least 86% of the ECGs were assigned correctly, indicating the remarkable similarity of the smartwatch to standard ECG recordings. Conclusion: We have introduced an augmented reality-based method to independently record multichannel smartwatch ECGs in an outpatient setting.

2.
JMIR Form Res ; 6(3): e29943, 2022 Mar 24.
Article En | MEDLINE | ID: mdl-35323125

BACKGROUND: Continuously growing medical knowledge and the increasing amount of data make it difficult for medical professionals to keep track of all new information and to place it in the context of existing information. A variety of digital technologies and artificial intelligence-based methods are currently available as persuasive tools to empower physicians in clinical decision-making and improve health care quality. A novel diagnostic decision support system (DDSS) prototype developed by Ada Health GmbH with a focus on traceability, transparency, and usability will be examined more closely in this study. OBJECTIVE: The aim of this study is to test the feasibility and functionality of a novel DDSS prototype, exploring its potential and performance in identifying the underlying cause of acute dyspnea in patients at the University Hospital Basel. METHODS: A prospective, observational feasibility study was conducted at the emergency department (ED) and internal medicine ward of the University Hospital Basel, Switzerland. A convenience sample of 20 adult patients admitted to the ED with dyspnea as the chief complaint and a high probability of inpatient admission was selected. A study physician followed the patients admitted to the ED throughout the hospitalization without interfering with the routine clinical work. Routinely collected health-related personal data from these patients were entered into the DDSS prototype. The DDSS prototype's resulting disease probability list was compared with the gold-standard main diagnosis provided by the treating physician. RESULTS: The DDSS presented information with high clarity and had a user-friendly, novel, and transparent interface. The DDSS prototype was not perfectly suited for the ED as case entry was time-consuming (1.5-2 hours per case). It provided accurate decision support in the clinical inpatient setting (average of cases in which the correct diagnosis was the first diagnosis listed: 6/20, 30%, SD 2.10%; average of cases in which the correct diagnosis was listed as one of the top 3: 11/20, 55%, SD 2.39%; average of cases in which the correct diagnosis was listed as one of the top 5: 14/20, 70%, SD 2.26%) in patients with dyspnea as the main presenting complaint. CONCLUSIONS: The study of the feasibility and functionality of the tool was successful, with some limitations. Used in the right place, the DDSS has the potential to support physicians in their decision-making process by showing new pathways and unintentionally ignored diagnoses. The DDSS prototype had some limitations regarding the process of data input, diagnostic accuracy, and completeness of the integrated medical knowledge. The results of this study provide a basis for the tool's further development. In addition, future studies should be conducted with the aim to overcome the current limitations of the tool and study design. TRIAL REGISTRATION: ClinicalTrials.gov NCT04827342; https://clinicaltrials.gov/ct2/show/NCT04827342.

...