Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 5(2): 2241-2249, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36203493

RESUMEN

We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.

2.
ACS Appl Mater Interfaces ; 14(32): 36980-36986, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35916606

RESUMEN

Confined ionic liquids in hydrophilic porous media have disrupted lattices and can be divided into two layers: An immobile ion layer adheres to the pore surfaces, and an inner layer exhibits faster mobility than the bulk. In this work, we report the first study of ionic liquids confined in block copolymer-based porous carbon fibers (PCFs) synthesized from polyacrylonitrile-block-polymethyl methacrylate (PAN-b-PMMA). The PCFs contain a network of unimodal mesopores of 13.6 nm in diameter and contain more hydrophilic surface functional groups than previously studied porous carbon. Elastic neutron scattering shows no freezing point for 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) confined in PCFs down to 20 K. Quasi-elastic neutron scattering (QENS) is used to measure the diffusion of [BMIM]BF4 confined in PCFs, which, surprisingly, is 7-fold faster than in the bulk. The unprecedentedly high ion diffusion remarks that PCFs hold exceptional potential for use in electrochemical catalysis, energy conversion, and storage.

3.
ACS Appl Mater Interfaces ; 12(13): 15765-15773, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163702

RESUMEN

Nanorods of PCN-222, a large-pore, zirconium-based porphyrinic metal-organic framework (MOF), have been prepared through coordination modulation-controlled crystal growth through competing monodentate ligands known as modulators-for incorporation into reverse osmosis thin-film nanocomposite (TFN) membranes. Postsynthetic modification of the MOF node through binding of myristic acid (MA) altered channel dimensions and pore size distribution. The extent of MOF modification was characterized through Brunauer-Emmett-Teller gas sorption and 1H NMR following digestion of the particles. TFN membranes containing PCN-222 nanoparticles modified with varying levels of MA were fabricated via dispersion in the aqueous phase during interfacial polymerization, and the resulting flux and rejection performance of each membrane were evaluated. Increased water flux was observed with increasing MA content in the PCN-222 nanorods. Up to 95% increase in water flux was observed for a TFN containing 0.01 wt % loading of PCN-222 nanorods with a 10:1 MA to linker ratio, while maintaining high salt rejection. The flux change was attributed to tunable water transport through the nanorod pore structure and also through rapid water transport pathways at the nanorod-polymer interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...