Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37444313

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. To explore the preventive effects of dietary foods on IBD, we evaluated the effects of the traditional Japanese fermented beverage "Amazake" on gut barrier function in this study. Black koji Amazake (BA) derived from Aspergillus luchuensis MEM-C strain and yellow koji Amazake (YA) derived from Aspergillus oryzae were made in this study, and their nutrients were analyzed. Mice with mild gut barrier dysfunction induced by Western diet were administered with 10% of each Amazake for two months. Mice gut microbiota were analyzed by 16S rRNA gene sequencing. BA contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than YA. The animal data revealed that BA significantly induced the expressions of antioxidant factors and enzymes such as NF-E2-related factor 2 (Nfr2), heme oxygenase 1 (HO1), and superoxide dismutase-2 (SOD-2). The gut barrier protein, occludin, and fecal immunoglobulin A (IgA) were also significantly enhanced by BA. Furthermore, the levels of serum endotoxin and hepatic monocyte chemotactic protein-1 (MCP-1) were decreased in both the BA and YA groups. In gut microbiota, Lachnospiraceae was increased by BA while Akkermansia muciniphilia was increased by YA. Black koji Amazake contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than yellow koji Amazake and contributed to protecting gut barrier function to reduce endotoxin intrusion and inflammation.

2.
J Biosci Bioeng ; 128(4): 456-462, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31031195

RESUMEN

The mash of sweet potato shochu (Japanese distilled spirit) has a low pH value because the shochu koji mold produces a large amount of citric acid, which prevents germ contamination. In this study, we examined acid protease PepA's role in shochu production. For this purpose, we constructed pepA deletion and overexpression strains, using a black koji mold Aspergillus luchuensis RIB 2604 (NBRC 4314), with the Agrobacterium-mediated transformation method. The rice koji, prepared using a pepA disruptant (ΔpepA) and pepA-overexpressing strain (OEpepA), demonstrated 1/2- and 24-fold acid protease activities compared to that prepared using the parental strain, respectively. A small-scale test of sweet potato shochu brewing indicated the mash of ΔpepA had a lower amino acid concentration, while the mash of OEpepA had a higher concentration than that produced by the parental strain. Therefore, the mash amino acid concentrations were proportional to these strains' acid proteases activities. After distilling these mashes, we examined each shochu's aroma components. Shochu prepared using ΔpepA had relatively higher aroma components, such as alcohol and ester, compared to that prepared using parental strains. Meanwhile, shochu prepared using OEpepA had lower aroma components than that prepared using the parental strains. Based on these results, the amount of shochu aroma components showed an inverse correlation to the acid protease activity in the mash. Thus, the koji mold's acid protease content had a greater influence on the aroma qualities of sweet potato shochu. Accordingly, we have discussed the possibility of the breeding of shochu koji mold with acid protease as an indicator.


Asunto(s)
Bebidas Alcohólicas/análisis , Aspergillus/metabolismo , Proteínas Bacterianas/metabolismo , Ipomoea batatas/metabolismo , Aspergillus/genética , Proteínas Bacterianas/genética , Odorantes , Oryza/metabolismo , Oryza/microbiología , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...