Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 7(1): 376, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776613

RESUMEN

The fabrication of porous Si-based Er-doped light-emitting devices is a very promising developing field for all-silicon light emitters. However, while luminescence of Er-doped porous silicon devices has been demonstrated, very little attention has been devoted to the doping process itself. We have undertaken a detailed study of this process, examining the porous silicon matrix from several points of view during and after the doping. In particular, we have found that the Er-doping process shows a threshold level which, as evidenced by the cross correlation of the various techniques used, does depend on the sample thickness and on the doping parameters.

2.
Nanoscale Res Lett ; 7(1): 377, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776626

RESUMEN

A bulk heterojunction of porous silicon and eumelanin, where the columnar pores of porous silicon are filled with eumelanin, is proposed as a new organic-inorganic hybrid material for photovoltaic applications. The addition of eumelanin, whose absorption in the near infrared region is significantly higher than porous silicon, should greatly enhance the light absorption capabilities of the empty porous silicon matrix, which are very low in the low energy side of the visible spectral range (from about 600 nm downwards). The experimental results show that indeed the photocarrier collection efficiency at longer wavelengths in eumelanin-impregnated samples is clearly higher with respect to empty porous silicon matrices.

3.
J Colloid Interface Sci ; 345(2): 448-53, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20188377

RESUMEN

In this work, we present the synthesis and characterization of n(+)-type porous silicon (PSi) layers. Our final aim is the fabrication of a biosensor that exploits the semiconductive properties of this material. PSi wafers were used as a matrix for enzyme adsorption. These wafers, as a result of their porous nanostructure, had a high surface area (360 m(2)/g) and pore size in the range 5-20 nm. The freshly prepared PSi was stabilized through controlled anodic oxidation. Two classes of samples differing for the level of oxidation were prepared. The first class was oxidized up to 2V (LO-PSi), whereas the second class was oxidized up to 10 V (HO-PSi). Both samples were used for the adsorption of Candida rugosa lipase. A significantly higher loading was ascertained for LO-PSi (140 mg/g) compared to HO-PSi (47 mg/g). The different hydrophobic-hydrophilic balance of the PSi surfaces induced by the different oxidation voltage affects the physical interactions that address the adsorption process of the lipase. The higher loading achieved with the LO-PSi resulted in a higher activity of the immobilized biocatalyst but in a lower catalytic efficiency. The two biocatalysts showed an acceptable stability toward storage (pH 5 buffer solution at 5 °C) within 2 weeks.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Lipasa/química , Semiconductores , Silicio/química , Catálisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA