Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Intervalo de año de publicación
1.
Vector Borne Zoonotic Dis ; 24(4): 237-244, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38306182

RESUMEN

Background: Haemagogus janthinomys is a primary sylvan vector of yellow fever virus and the emerging Mayaro virus. However, despite its medical importance, there is a dearth of data on the molecular taxonomy of this mosquito species. Methods: In this study, DNA barcoding analysis was performed on 64 adult female mosquitoes from Trinidad morphologically identified as Hg. janthinomys. The mitochondrial cytochrome c oxidase I (COI) gene and ribosomal DNA internal transcribed spacer 2 (ITS2) region of the mosquitoes were PCR amplified and sequenced, and molecular phylogenies inferred. Results: The BLASTN analysis showed that only 20% (n = 13/66) of COI sequences had high similarity (>99% identity) to Hg. janthinomys and the remaining sequences had low similarity (<90% identity) to reference GenBank sequences. Phylogenetic analysis of COI sequences revealed the presence of four strongly supported groups, with one distinct clade that did not align with any reference sequences. Corresponding ITS2 sequences for samples in this distinct COI group clustered into three clades. Conclusions: These molecular findings suggest the existence of a putative new Haemagogus mosquito species and underscore the need for further, more in-depth investigations into the taxonomy and classification of the Haemagogus genus.


Asunto(s)
Culicidae , Animales , Femenino , Código de Barras del ADN Taxonómico/veterinaria , Mosquitos Vectores/genética , Mosquitos Vectores/anatomía & histología , Filogenia , Trinidad y Tobago
2.
Insects ; 14(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132622

RESUMEN

Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.

3.
Sci Rep ; 13(1): 22511, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38110471

RESUMEN

G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.


Asunto(s)
Aedes , Insecticidas , Animales , Interferencia de ARN , Saccharomyces cerevisiae/genética , Insecticidas/farmacología , ARN Interferente Pequeño/genética , Control de Mosquitos/métodos , Aedes/genética , Larva/genética , Receptores de Serotonina 5-HT1/genética
4.
Genetics ; 222(3)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083009

RESUMEN

Aedes aegypti is a major vector of arboviruses that cause dengue, chikungunya, yellow fever, and Zika. Although recent success in reverse genetics has facilitated rapid progress in basic and applied research, integration of forward genetics with modern technologies remains challenging in this important species, as up to 47% of its chromosome is refractory to genetic mapping due to extremely low rate of recombination. Here, we report the development of a marker-assisted mapping strategy to readily screen for and genotype only the rare but informative recombinants, drastically increasing both the resolution and signal-to-noise ratio. Using marker-assisted mapping, we mapped a transgene that was inserted in a >100-Mb recombination desert and a sex-linked spontaneous red-eye (re) mutation just outside the region. We subsequently determined, by CRISPR/Cas9-mediated knockout, that cardinal is the causal gene of re, which is the first forward genetic identification of a causal gene in Ae. aegypti. The identification of the causal gene of the sex-linked re mutation provides the molecular foundation for using gene editing to develop versatile and stable genetic sexing methods. To facilitate genome-wide forward genetics in Ae. aegypti, we generated and compiled a number of lines with markers throughout the genome. Thus, by overcoming the challenges presented by the vast recombination deserts and the scarcity of markers, we have shown that effective forward genetic analysis is increasingly feasible in this important arboviral vector species.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Arbovirus/genética , Mosquitos Vectores/genética , Recombinación Genética
6.
J Med Entomol ; 59(5): 1500-1506, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35976948

RESUMEN

Mosquitoes and other blood feeding arthropods are vectors of pathogens causing serious human diseases, such as Plasmodium spp. (malaria), Wuchereria bancrofti (lymphatic filariasis), Borrelia burgdorferi (Lyme disease), and viruses causing dengue, Zika, West Nile, chikungunya, and yellow fever. Among the most effective strategies for the prevention of vector-borne diseases are those aimed at reducing human-vector interactions, such as insecticide applications and insecticide-treated bed nets (ITNs). In some areas where ITNs are widely used, behavioral adaptations have resulted in mosquitoes shifting their time of blood feeding to earlier or later in the night when the bed nets are not being employed. Little is known about the genetic basis of these behavioral shifts. We conducted quantitative trait locus (QTL) analysis using two strains of Culex pipiens sensu lato with contrasting blood feeding behaviors, wherein the lab adapted Shasta strain blood feeds at any time of the day or night, while the newly established Trinidad strain feeds only at night. We identified a single locus on chromosome 2 associated with the observed variation in feeding times. None of the core clock genes period, timeless, clock, cycle, PAR-domain protein 1, vrille, discs overgrown, cryptochrome 1, or cryptochrome 2 were located within the QTL region. We then monitored locomotor behavior to determine if they differed in their flight activity. The highly nocturnal Trinidad strain showed little daytime activity while the day-feeding Shasta strain was active during the day, suggesting blood feeding behavior and flight activity are physiologically linked.


Asunto(s)
Culex , Culicidae , Infección por el Virus Zika , Virus Zika , Animales , Criptocromos/genética , Culex/fisiología , Culicidae/genética , Conducta Alimentaria , Humanos , Mosquitos Vectores/genética , Sitios de Carácter Cuantitativo , Virus Zika/genética
7.
Sci Rep ; 12(1): 4047, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260697

RESUMEN

The use of lure-and-kill, large-volume ovitraps to control Aedes aegypti and Aedes albopictus populations has shown promise across multiple designs that target gravid females (adulticidal) or larvae post-oviposition (larvicidal). Here we report on a pilot trial to deploy 10 L yeast-baited ovitraps at select sites in Curepe, Trinidad, West Indies during July to December, 2019. Oviposition rates among ovitraps placed in three Treatment sites were compared to a limited number of traps placed in three Control areas (no Aedes management performed), and three Vector areas (subjected to standard Ministry of Health, Insect Vector Control efforts). Our goal was to gain baseline information on efforts to saturate the Treatment sites with ovitraps within 20-25 m of each other and compare oviposition rates at these sites with background oviposition rates in Control and Vector Areas. Although yeast-baited ovitraps were highly attractive to gravid Aedes females, a primary limitation encountered within the Treatment sites was the inability to gain access to residential compounds for trap placement, primarily due to residents being absent during the day. This severely limited our intent to saturate these areas with ovitraps, indicating that future studies must include plans to account for these inaccessible zones during trap placement.


Asunto(s)
Aedes , Animales , Femenino , Control de Mosquitos , Mosquitos Vectores , Oviposición , Saccharomyces cerevisiae , Trinidad y Tobago
8.
Insects ; 12(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821787

RESUMEN

Concerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.

9.
Pathogens ; 10(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684200

RESUMEN

Prevention of mosquito-borne infectious diseases will require new classes of environmentally safe insecticides and novel mosquito control technologies. Saccharomyces cerevisiae was engineered to express short hairpin RNA (shRNA) corresponding to mosquito Rbfox1 genes. The yeast induced target gene silencing, resulting in larval death that was observed in both laboratory and outdoor semi-field trials conducted on Aedes aegypti. High levels of mortality were also observed during simulated field trials in which adult females consumed yeast delivered through a sugar bait. Mortality correlated with defects in the mosquito brain, in which a role for Rbfox1 as a positive regulator of Notch signaling was identified. The larvicidal and adulticidal activities of the yeast were subsequently confirmed in trials conducted on Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus, yet the yeast had no impact on survival of select non-target arthropods. These studies indicate that yeast RNAi pesticides targeting Rbfox1 could be further developed as broad-based mosquito larvicides and adulticides for deployment in integrated biorational mosquito control programs. These findings also suggest that the species-specificity of attractive targeted sugar baits, a new paradigm for vector control, could potentially be enhanced through RNAi technology, and specifically through the use of yeast-based interfering RNA pesticides.

10.
Sci Rep ; 11(1): 16584, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400676

RESUMEN

Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.


Asunto(s)
Culicidae/virología , Virus ARN/aislamiento & purificación , Viroma , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Animales , Secuencia de Bases , Aves , Culicidae/microbiología , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Geografía Médica , Especificidad del Huésped , Insectos Vectores/virología , Filogenia , Proteobacteria/genética , Virus ARN/clasificación , Virus ARN/genética , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Roedores , Togaviridae/genética , Togaviridae/aislamiento & purificación , Trinidad y Tobago/epidemiología , Viroma/genética
12.
PLoS One ; 16(6): e0252997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34185784

RESUMEN

Dengue, Zika, chikungunya and yellow fever viruses continue to be a major public health burden. Aedes mosquitoes, the primary vectors responsible for transmitting these viral pathogens, continue to flourish due to local challenges in vector control management. Yeast interfering RNA-baited larval lethal ovitraps are being developed as a novel biorational control tool for Aedes mosquitoes. This intervention circumvents increasing issues with insecticide resistance and poses no known threat to non-target organisms. In an effort to create public awareness of this alternative vector control strategy, gain stakeholder feedback regarding product design and acceptance of the new intervention, and build capacity for its potential integration into existing mosquito control programs, this investigation pursued community stakeholder engagement activities, which were undertaken in Trinidad and Tobago. Three forms of assessment, including paper surveys, community forums, and household interviews, were used with the goal of evaluating local community stakeholders' knowledge of mosquitoes, vector control practices, and perceptions of the new technology. These activities facilitated evaluation of the hypothesis that the ovitraps would be broadly accepted by community stakeholders as a means of biorational control for Aedes mosquitoes. A comparison of the types of stakeholder input communicated through use of the three assessment tools highlighted the utility and merit of using each tool for assessing new global health interventions. Most study participants reported a general willingness to purchase an ovitrap on condition that it would be affordable and safe for human health and the environment. Stakeholders provided valuable input on product design, distribution, and operation. A need for educational campaigns that provide a mechanism for educating stakeholders about vector ecology and management was highlighted. The results of the investigation, which are likely applicable to many other Caribbean nations and other countries with heavy arboviral disease burdens, were supportive of supplementation of existing vector control strategies through the use of the yeast RNAi-based ovitraps.


Asunto(s)
Aedes/fisiología , Control de Mosquitos/instrumentación , Mosquitos Vectores/virología , ARN Interferente Pequeño/genética , Saccharomyces cerevisiae/genética , Virosis/prevención & control , Aedes/virología , Animales , Femenino , Humanos , Control de Mosquitos/métodos , Oviposición , Participación de los Interesados , Trinidad y Tobago , Virosis/epidemiología , Virosis/transmisión
13.
PLoS One ; 15(8): e0237675, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32797066

RESUMEN

RNA interference (RNAi), a technique used to investigate gene function in insects and other organisms, is attracting attention as a potential new technology for mosquito control. Saccharomyces cerevisiae (baker's yeast) was recently engineered to produce interfering RNA molecules that silence genes required for mosquito survival, but which do not correspond to genes in humans or other non-target organisms. The resulting yeast pesticides, which facilitate cost-effective production and delivery of interfering RNA to mosquito larvae that eat the yeast, effectively kill mosquitoes in laboratory and semi-field trials. In preparation for field evaluation of larvicides in Trinidad, a Caribbean island with endemic diseases resulting from pathogens transmitted by Aedes mosquitoes, adult residents living in the prospective trial site communities of Curepe, St. Augustine, and Tamana were engaged. Open community forums and paper surveys were used to assess the potential acceptability, societal desirability, and sustainability of yeast interfering RNA larvicides. These assessments revealed that Trinidadians have good working knowledge of mosquitoes and mosquito-borne illnesses. A majority of the respondents practiced some method of larval mosquito control and agreed that they would use a new larvicide if it were proven to be safe and effective. During the community engagement forums, participants were educated about mosquito biology, mosquito-borne diseases, and the new yeast larvicides. When invited to provide feedback, engagement forum attendees were strongly supportive of the new technology, raised few concerns, and provided helpful advice regarding optimal larvicide formulations, insecticide application, operational approaches for using the larvicides, and pricing. The results of these studies suggest that the participants are supportive of the potential use of yeast interfering RNA larvicides in Trinidad and that the communities assessed in this investigation represent viable field sites.


Asunto(s)
Aedes/genética , Ingeniería Genética/métodos , Control de Mosquitos/métodos , Interferencia de ARN , Saccharomyces cerevisiae/genética , Adulto , Animales , Femenino , Humanos , Larva/genética , Masculino , Persona de Mediana Edad , Mosquitos Vectores/genética , Control Biológico de Vectores/métodos , ARN Interferente Pequeño/genética , Características de la Residencia , Encuestas y Cuestionarios , Trinidad y Tobago
14.
PLoS Negl Trop Dis ; 14(7): e0008479, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32687496

RESUMEN

The existing mosquito pesticide repertoire faces great challenges to sustainability, and new classes of pesticides are vitally needed to address established and emerging mosquito-borne infectious diseases. RNA interference- (RNAi-) based pesticides are emerging as a promising new biorational mosquito control strategy. In this investigation, we describe characterization of an interfering RNA pesticide (IRP) corresponding to the mosquito Shaker (Sh) gene, which encodes an evolutionarily conserved voltage-gated potassium channel subunit. Delivery of the IRP to Aedes aegypti adult mosquitoes in the form of siRNA that was injected or provided as an attractive toxic sugar bait (ATSB) led to Sh gene silencing that resulted in severe neural and behavioral defects and high levels of adult mortality. Likewise, when provided to A. aegypti larvae in the form of short hairpin RNA (shRNA) expressed in Saccharomyces cerevisiae (baker's yeast) that had been formulated into a dried inactivated yeast tablet, the yeast IRP induced neural defects and larval death. Although the Sh IRP lacks a known target site in humans or other non-target organisms, conservation of the target site in the Sh genes of multiple mosquito species suggested that it may function as a biorational broad-range mosquito insecticide. In support of this, the Sh IRP induced both adult and larval mortality in treated Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquitoes, but was not toxic to non-target arthropods. These studies indicated that IRPs targeting Sh could one day be used in integrated biorational mosquito control programs for the prevention of multiple mosquito-borne illnesses. The results of this investigation also suggest that the species-specificity of ATSB technology, a new paradigm for vector control, could be enhanced through the use of RNAi-based pesticides.


Asunto(s)
Agentes de Control Biológico/farmacología , Culicidae/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Oligonucleótidos/farmacología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , ADN , Daphnia , Femenino , Silenciador del Gen , Larva/efectos de los fármacos , ARN Interferente Pequeño , Canales de Potasio de la Superfamilia Shaker/genética
15.
J Med Entomol ; 57(6): 1775-1781, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32556270

RESUMEN

Efforts directed at genetic modification of mosquitoes for population control or replacement are highly dependent on the initial mating success of transgenic male mosquitoes following their release into natural populations. Adult mosquito phenotypes are influenced by the environmental conditions experienced as larvae. Semifield studies conducted to date have not taken that under consideration when testing male mating fitness, and have compared mating success of males reared under identical environmental conditions. We performed pairwise mating challenges between males from a genetically modified laboratory strain (BF2) versus males from a recent Trinidad field isolate of Aedes aegypti (L.), a major vector of multiple arboviruses. We utilized larval density and nutrition to simulate environmental stress experienced by the Trinidad males and females. Our results indicated that environmental stress during larval development negatively influenced the competitiveness and reproductive success of males from the Trinidad population when paired with optimum reared BF2 males. Small (0.027 m3) and large (0.216 m3) trials were conducted wherein stressed or optimum Trinidad males competed with optimum BF2 males for mating with stressed Trinidad females. When competing with stress reared Trinidad males, optimum reared BF2 males were predominant in matings with stress reared Trinidad females, and large proportions of these females mated with males of both strains. When competing with optimum reared Trinidad males, no difference in mating success was observed between them and BF2 males, and frequencies of multiple matings were low. Our results indicate that future mating competition studies should incorporate appropriate environmental conditions when designing mating fitness trials of genetically modified males.


Asunto(s)
Aedes/fisiología , Conducta Sexual Animal , Animales , Animales Modificados Genéticamente/fisiología , Conducta Competitiva , Masculino , Trinidad y Tobago
16.
Insect Biochem Mol Biol ; 120: 103359, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169582

RESUMEN

G protein-coupled receptors (GPCRs), key regulators of a variety of critical biological processes, are attractive targets for insecticide development. Given the importance of these receptors in many organisms, including humans, it is critical that novel pesticides directed against GPCRs are designed to be species-specific. Here, we present characterization of an interfering RNA pesticide (IRP) targeting the mosquito GPCR-encoding dopamine 1 receptor (dop1) genes. A small interfering RNA corresponding to dop1 was identified in a screen for IRPs that kill Aedes aegypti during both the adult and larval stages. The 25 bp sequence targeted by this IRP is conserved in the dop1 genes of multiple mosquito species, but not in non-target organisms, indicating that it could function as a biorational mosquito insecticide. Aedes aegypti adults treated through microinjection or attractive toxic sugar bait delivery of small interfering RNA corresponding to the target site exhibited severe neural and behavioral defects and high levels of adult mortality. Likewise, A. aegypti larval consumption of dried inactivated yeast tablets prepared from a Saccharomyces cerevisiae strain engineered to express short hairpin RNA corresponding to the dop1 target site resulted in severe neural defects and larval mortality. Aedes albopictus and Anopheles gambiae adult and larval mortality was also observed following treatment with dop1 IRPs, which were not toxic to non-target arthropods. The results of this investigation indicate that dop1 IRPs can be used for species-specific targeting of dop1 GPCRs and may represent a new biorational strategy for control of both adult and larval mosquitoes.


Asunto(s)
Aedes , Anopheles , Proteínas de Insectos/genética , Insecticidas/farmacología , Control de Mosquitos , ARN Interferente Pequeño/farmacología , Receptores Dopaminérgicos/genética , Animales , Secuencia Conservada , Femenino , Proteínas de Insectos/metabolismo , Interferencia de ARN , Receptores Dopaminérgicos/metabolismo
17.
J Med Entomol ; 56(6): 1734-1738, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31283827

RESUMEN

Surveillance for blood-fed female mosquitoes was performed between August 2015 and February 2016 at sites along the periphery of the Aripo Savannas Environmentally Reserve (ASSR) located in northeastern Trinidad, West Indies. We collected engorged female mosquitoes representing 13 species. DNA extractions from dissected abdomens were subjected to PCR amplification with three primer pairs targeting the mitochondrial cytochrome oxidase I and cytochrome b gene sequences. High-quality sequence information and host identification were obtained for 42 specimens representing eight mosquito species with at least one primer combination. A broad range of vertebrates including humans were identified, but the majority were nonhuman mammals, both domestic and wild. Domestic dogs were the most common host and may represent potential sentinel species for monitoring local enzootic arbovirus activity in Trinidad. Culex declarator Dyer and Knab and Culex nigripalpus Theobald were the most common blood-fed mosquito species comprising 79.1% of the total number identified. These species obtained blood meals from birds, nonhuman mammals, and human hosts, and therefore pose significant risks as potential bridge vectors for epizootic arbovirus transmission in the ASSR area as well as other sylvan areas in Trinidad. These data represent the first such results for Trinidad.


Asunto(s)
Culicidae/fisiología , Cadena Alimentaria , Mosquitos Vectores/fisiología , Animales , Arbovirus , Aves , Dieta , Conducta Alimentaria , Femenino , Humanos , Mamíferos , Trinidad y Tobago
18.
Acta Trop ; 199: 105108, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31351893

RESUMEN

The Mayaro virus disease (MAYVD) is an emerging mosquito borne zoonosis that was first reported on the island of Trinidad in 1954. The viral agent for this disease is known to presently be endemic to Central and South America. The enzootic cycle of the Mayaro virus (MAYV) is not fully characterized, though primates are thought to be the main reservoir with Haemagogus species of mosquitoes as the primary vector. This virus has been responsible for several sporadic cases of infections and limited outbreaks, but it is postulated that the MAYVD will become a major epidemic in the future, following in the steps of the recent pandemics caused by Chikungunya and Zika viruses. Mitigating possible major outbreaks of MAYVD in the future would require effective strategies for vector control, for which knowledge on the ecology and distribution of the Haemagogus mosquitoes would be vitally important. In Trinidad, Haemagogus species have only been reported in the northwestern peninsula of the island based on studies up to 1995. However, no recent investigations have been completed to determine the status of this important vector on the island. The aim of this study was to investigate the current spatial distribution of Haemagogus species in the island of Trinidad, West Indies. Adult Haemagogus (Hag.) mosquitoes and larvae were surveyed during a twenty-month period using human bait trapping and ovitraps in major forested areas on the island. Mosquito species were identified using classical taxonomic keys. Haemagogus species were widespread and found in all forest types surveyed. Hag. janthinomys (85.7%) was the most widely distributed and dominant species on the island. Lower levels of Hag. leucocelaneus (7.3%), Hag. equinus (6.4%) and Hag. celeste (0.6%) were also collected. Overall, the proportion of mosquitoes collected in the wet season (June-December) was 3.5 times more than in the dry season (January-May). Mangroves, young secondary forests, semi-evergreen and evergreen forest types had relatively high mean abundance levels of Haemagogus species as compared to deciduous and montane forests. Proximity analysis suggests that population settlements within a 1 km buffer of the forest peripherals may be at risk for any emerging arboviral disease associated with these mosquito vectors. Haemagogus species showed a much wider distribution in Trinidad as compared to previous reports from up to 20 years ago and were prevalent in areas with no known presence of non-human primates. Since the MAYV has been previously implicated in causing infections in vertebrate hosts like rodents, birds and small mammals, the findings of this study suggest that there may be alternative hosts and reservoirs of this virus in the sylvatic cycle in Trinidad, other than primates. This has significant epidemiological implications for mosquito-borne viral infections in the region.


Asunto(s)
Infecciones por Alphavirus/transmisión , Culicidae , Mosquitos Vectores , Animales , Culicidae/virología , Demografía , Humanos , Trinidad y Tobago
19.
PLoS Negl Trop Dis ; 13(5): e0007422, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31107878

RESUMEN

New mosquito control strategies are vitally needed to address established and emerging arthropod-borne infectious diseases. Here we describe the characterization of a yeast interfering RNA larvicide that was developed through the genetic engineering of Saccharomyces cerevisiae (baker's yeast) to express a short hairpin RNA targeting the Aedes aegypti synaptotagmin (Aae syt) gene. The larvicide effectively silences the Aae syt gene, causes defects at the larval neural synapse, and induces high rates of A. aegypti larval mortality in laboratory, simulated-field, and semi-field trials. Conservation of the interfering RNA target site in multiple mosquito species, but not in humans or other non-target species, suggested that it may function as a broad-range mosquito larvicide. In support of this, consumption of the yeast interfering RNA larvicide was also found to induce high rates of larval mortality in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquito larvae. The results of these studies suggest that this biorational yeast interfering RNA larvicide may represent a new intervention that can be used to combat multiple mosquito vectors of human diseases.


Asunto(s)
Proteínas de Insectos/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Control Biológico de Vectores/métodos , Interferencia de ARN , Saccharomyces cerevisiae/genética , Sinaptotagminas/genética , Aedes/genética , Aedes/metabolismo , Aedes/microbiología , Animales , Anopheles/genética , Anopheles/metabolismo , Anopheles/microbiología , Culex/genética , Culex/metabolismo , Culex/microbiología , Femenino , Ingeniería Genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Larva/virología , Masculino , Mosquitos Vectores/metabolismo , Mosquitos Vectores/virología , Saccharomyces cerevisiae/metabolismo , Sinaptotagminas/metabolismo
20.
Parasit Vectors ; 12(1): 256, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118082

RESUMEN

BACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control.


Asunto(s)
Proteínas de Insectos/genética , Control de Mosquitos/métodos , Interferencia de ARN , Saccharomyces cerevisiae/genética , Semaforinas/genética , Aedes/genética , Animales , Anopheles/genética , Bioingeniería , Culex/genética , Femenino , Larva/genética , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...