Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712232

RESUMEN

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.

2.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35584229

RESUMEN

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Asunto(s)
Anticuerpos Biespecíficos , Linfocitos T , Animales , Humanos , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1 , Complejo CD3 , Cistina , Modelos Animales de Enfermedad , Mamíferos , Péptidos
3.
J Mol Biol ; 432(14): 3989-4009, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32304700

RESUMEN

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Animales , Antígenos CD/química , Antígenos CD/efectos de los fármacos , Antígenos CD/genética , Antígenos CD/farmacología , Sistema Nervioso Central/efectos de los fármacos , Cistina/química , Cistina/genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Ratones , Neuropéptidos/química , Neuropéptidos/farmacología , Neurotensina/química , Neurotensina/farmacología , Péptidos/química , Unión Proteica/efectos de los fármacos , Receptores de Transferrina/química , Receptores de Transferrina/efectos de los fármacos , Receptores de Transferrina/genética
4.
Methods Mol Biol ; 2070: 363-396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31625107

RESUMEN

Many diseases are mediated by targets that are not amenable to conventional small-molecule drug approaches. While antibody-based drugs have undeniable utility, peptides of the 1-9 kDa size range (10-80 amino acids) have drawn interest as alternate drug scaffolds This is born of a desire to identify compounds with the advantages of antibody-based therapeutics (affinity, potency, specificity, and ability to disrupt protein:protein interactions) without all of their liabilities (large size, expensive manufacturing, and necessity of humanization). Of these alternate scaffolds, cystine-dense peptides (CDPs) have several specific benefits. Due to their stable intra-chain disulfide bridges, CDPs often demonstrate resistance to heat and proteolysis, along with low immunogenicity. These properties do not require chemical modifications, permitting CDP screening by conventional genetic means. The cystine topology of a typical CDP requires an oxidative environment, and we have found that the mammalian secretory pathway is most effective at allowing diverse CDPs to achieve a stable fold. As such, high-diversity screens to identify CDPs that interact with targets of interest can be efficiently conducted using mammalian surface display. In this protocol, we present the theory and tools to conduct a mammalian surface display screen for CDPs that bind with targets of interest, including the steps to validate binding and mature the affinity of preliminary candidates. With these methods, CDPs of all kinds can be brought to bear against targets that would benefit from a peptide-based intervention.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Biblioteca de Péptidos , Ingeniería de Proteínas , Animales , Línea Celular , Disulfuros/química , Disulfuros/metabolismo , Humanos
5.
Nat Commun ; 9(1): 1072, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523778

RESUMEN

In the original version of this Article the colour key for the amino acid enrichment score was inadvertently omitted from the lower panel of Figure 5b during the production process. This has now been corrected in the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 2244, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269835

RESUMEN

Protein:protein interactions are among the most difficult to treat molecular mechanisms of disease pathology. Cystine-dense peptides have the potential to disrupt such interactions, and are used in drug-like roles by every clade of life, but their study has been hampered by a reputation for being difficult to produce, owing to their complex disulfide connectivity. Here we describe a platform for identifying target-binding cystine-dense peptides using mammalian surface display, capable of interrogating high quality and diverse scaffold libraries with verifiable folding and stability. We demonstrate the platform's capabilities by identifying a cystine-dense peptide capable of inhibiting the YAP:TEAD interaction at the heart of the oncogenic Hippo pathway, and possessing the potency and stability necessary for consideration as a drug development candidate. This platform provides the opportunity to screen cystine-dense peptides with drug-like qualities against targets that are implicated for the treatment of diseases, but are poorly suited for conventional approaches.


Asunto(s)
Cistina/análisis , Péptidos/química , Péptidos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Descubrimiento de Drogas , Proteínas de Escherichia coli/química , Glicosilación , Humanos , Biblioteca de Péptidos , Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...