Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 72(5): 978-990, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37294317

RESUMEN

Due to the ongoing climate changes, temperate forests are increasingly exposed to fires. However, until now the functioning of post-fire temperate forest ecosystems with regard to used forest management method has been weakly recognized. Here, we examined three variants of forest restoration after fire (two variants of natural regeneration with no soil preparation-NR, and artificial restoration by planting following soil preparation-AR) regarding their environmental consequences in development of post-fire Scots pine (Pinus sylvestris) ecosystem. The study was conducted using a 15-year timespan in a long-term research site located in the Cierpiszewo area (N Poland) being one of the biggest post-fire grounds in European temperate forests in last decades. We focused on soil and microclimatic variables as well as on growth dynamics of post-fire pines generation. We found that the restoration rates of soil organic matter, carbon and most studied nutritional elements stocks were higher in NR plots than in AR. This could be primarily linked to the higher (p < 0.05) density of pines in naturally regenerated plots, and the subsequent faster organic horizon reconstruction after fire. The difference in tree density also involved regular differences in air and soil temperature among plots: consistently higher in AR than in both NR plots. In turn, lower water uptake by trees in AR implied that soil moisture was constantly the highest in this plot. Our study delivers strong arguments to pay more attention to restore post-fire forest areas with the use of natural regeneration with no soil preparation.


Asunto(s)
Incendios , Pinus sylvestris , Pinus , Ecosistema , Polonia , Bosques , Árboles , Suelo
2.
Sci Rep ; 7(1): 274, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325890

RESUMEN

Habitat filtering models predict ecologically similar plant species to jointly colonize sites due to comparable environmental characteristics leading to an aggregated pattern of species spatial occurrence. Models focused on interspecific competition expect species with similar ecological requirements to be spatially segregated. While both models are corroborated by field work, few empirical studies have tried to infer under which habitat conditions these patterns of co-occurrence prevail. Here we use an exceptional data set on central European pine forest understorey plant communities to assess the change in community structure along gradients of soil productivity and heterogeneity. We found all understorey communities to be significantly nested. The degree of segregation increased with increasing soil Ca and Mg content, as well as with increasing pH, nutrient availability, and moisture. However, variability in soil characteristics did not significantly influence the pattern of species co-occurrence. We also found an intimate link between productivity, species richness, and species segregation making any causal inference challenging. These results point to possible misinterpretations and pitfalls in studies on community assembly. Finally our results demonstrate that managed forests provide a natural experiment of understorey community assembly under controlled conditions, an experiment that deserves further attention.


Asunto(s)
Biota , Exposición a Riesgos Ambientales , Bosques , Pinus/crecimiento & desarrollo , Plantas/clasificación , Calcio/análisis , Ecosistema , Europa (Continente) , Alimentos , Concentración de Iones de Hidrógeno , Magnesio/análisis , Suelo/química , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA