Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143299

RESUMEN

Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of a biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Here we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis using a bioinformatic search strategy that relies on the mapping of composite active site motifs. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a distinct selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.

2.
J Am Chem Soc ; 146(29): 19629-19634, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38989876

RESUMEN

Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.


Asunto(s)
Vancomicina , Vancomicina/química , Vancomicina/biosíntesis , Cinética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/biosíntesis
3.
Curr Opin Chem Biol ; 81: 102495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954947

RESUMEN

The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.


Asunto(s)
Selenio , Selenoproteínas , Selenio/metabolismo , Selenio/química , Selenoproteínas/metabolismo , Humanos , Animales , Selenocisteína/metabolismo , Selenocisteína/química , Enzimas/metabolismo , Oxidación-Reducción , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
4.
Curr Opin Chem Biol ; 81: 102481, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917732

RESUMEN

Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.


Asunto(s)
Antibacterianos , Enediinos , Enediinos/química , Enediinos/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Familia de Multigenes , Genoma Bacteriano , Productos Biológicos/química , Productos Biológicos/metabolismo , Genómica/métodos
5.
Angew Chem Int Ed Engl ; : e202405367, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898540

RESUMEN

Recent advances in whole genome sequencing have revealed an immense microbial potential for the production of therapeutic small molecules, even from well-known producers. To access this potential, we subjected prominent antimicrobial producers to alternative antiproliferative assays using persistent cancer cell lines. Described herein is our discovery of hirocidins, novel secondary metabolites from Streptomyces hiroshimensis with antiproliferative activities against colon and persistent breast cancer cells. Hirocidin A is an unusual nine-membered carbocyclic maleimide and hirocidins B and C are relatives with an unprecedented, bridged azamacrocyclic backbone. Mode of action studies show that hirocidins trigger mitochondrion-dependent apoptosis by inducing expression of the key apoptotic effector caspase-9. The discovery of new cytotoxins contributes to scaffold diversification in anticancer drug discovery and the reported modes of action and concise total synthetic route for variant A set the stage for unraveling specific targets and biochemical interactions of the hirocidins.

6.
Nat Chem Biol ; 20(7): 924-933, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942968

RESUMEN

Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.


Asunto(s)
Antibacterianos , Clostridioides difficile , Pruebas de Sensibilidad Microbiana , Clostridioides difficile/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Vancomicina/farmacología , Vancomicina/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Ácidos Teicoicos/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Quimioterapia Combinada , Péptidos Cíclicos , Lipopéptidos
7.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645211

RESUMEN

Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of the first biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Using a bioinformatic search strategy that relies on mapping of composite active site motifs, we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a novel selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.

8.
J Am Chem Soc ; 146(11): 7313-7323, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452252

RESUMEN

DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.


Asunto(s)
Imidazoles , Oligopéptidos , Oxigenasas , Procesamiento Proteico-Postraduccional , Oxigenasas/genética , Péptidos/química , Familia de Multigenes , Catálisis
9.
J Am Chem Soc ; 146(6): 3805-3815, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38316431

RESUMEN

Advancements in DNA sequencing technologies and bioinformatics have enabled the discovery of new metabolic reactions from overlooked microbial species and metagenomic sequences. Using a bioinformatic co-occurrence strategy, we previously generated a network of ∼600 uncharacterized quorum-sensing-regulated biosynthetic gene clusters that code for ribosomally synthesized and post-translationally modified peptide (RiPP) natural products and are tailored by radical S-adenosylmethionine (RaS) enzymes in streptococci. The most complex of these is the GRC subfamily, named after a conserved motif in the precursor peptide and found exclusively in Streptococcus pneumoniae, the causative agent of bacterial pneumonia. In this study, using both in vivo and in vitro approaches, we have elucidated the modifications installed by the grc biosynthetic enzymes, including a ThiF-like adenylyltransferase/cyclase that generates a C-terminal Glu-to-Cys thiolactone macrocycle, and two RaS enzymes, which selectively epimerize the ß-carbon of threonine and desaturate histidine to generate the first instances of l-allo-Thr and didehydrohistidine in RiPP biosynthesis. RaS-RiPPs that have been discovered thus far have stood out for their exotic macrocycles. The product of the grc cluster breaks this trend by generating two noncanonical residues rather than an unusual macrocycle in the peptide substrate. These modifications expand the landscape of nonproteinogenic amino acids in RiPP natural product biosynthesis and motivate downstream biocatalytic applications of the corresponding enzymes.


Asunto(s)
Aminoácidos , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Péptidos/química , Streptococcus , S-Adenosilmetionina/metabolismo
10.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328144

RESUMEN

Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions, and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein, we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporin is wide-spread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.

11.
Biochemistry ; 62(23): 3337-3342, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37966244

RESUMEN

Selenium (Se) is an essential micronutrient that is found naturally in proteins, nucleic acids, and natural products. Unlike selenoproteins and selenonucleic acids, little is known about the structures of biosynthetic enzymes that incorporate Se into small molecules. Here, we report the X-ray crystal structure of SenB, the first known Se-glycosyltransferase that was recently found to be involved in the biosynthesis of the Se-containing metabolite selenoneine. SenB catalyzes C-Se bond formation using selenophosphate and an activated uridine diphosphate sugar as a Se and glycosyl donor, respectively, making it the first known selenosugar synthase and one of only four bona fide C-Se bond-forming enzymes discovered to date. Our crystal structure, determined to 2.25 Å resolution, reveals that SenB is a type B glycosyltransferase, displaying the prototypical fold with two globular Rossmann-like domains and a catalytic interdomain cleft. By employing complementary structural biology techniques, we find that SenB undergoes both local and global substrate-induced conformational changes, demonstrating a significant increase in α-helicity and a transition to a more compact conformation. Our results provide the first structure of SenB and set the stage for further biochemical characterization in the future.


Asunto(s)
Selenio , Selenio/metabolismo , Glicosiltransferasas , Ligandos , Selenoproteínas , Cristalografía por Rayos X
12.
ACS Chem Biol ; 18(8): 1854-1862, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463302

RESUMEN

Enediyne antibiotics are a striking family of DNA-cleaving natural products with high degrees of cytotoxicity and structural complexity. Microbial genome sequences, which have recently accumulated, point to an untapped trove of "cryptic" enediynes. Most of the cognate biosynthetic gene clusters (BGCs) are sparingly expressed under standard growth conditions, making it difficult to characterize their products. Herein, we report a fluorescence-based DNA cleavage assay coupled with high-throughput elicitor screening for the rapid, targeted discovery of cryptic enediyne metabolites. We applied the approach to Streptomyces clavuligerus, which harbors two such BGCs with unknown products, identified steroids as effective elicitors, and characterized 10 cryptic enediyne-derived natural products, termed clavulynes A-J with unusual carbonate and terminal olefin functionalities, with one of these congeners matching the recently reported jejucarboside. Our results contribute to the growing repertoire of enediynes and provide a blueprint for identifying additional ones in the future.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Antibacterianos , Enediinos/química , Familia de Multigenes
13.
ACS Chem Biol ; 18(7): 1473-1479, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37405871

RESUMEN

The emergence of multidrug-resistant pathogens poses a threat to public health and requires new antimicrobial agents. As the archetypal glycopeptide antibiotic (GPA) used against drug-resistant Gram-positive pathogens, vancomycin provides a promising starting point. Peripheral alterations to the vancomycin scaffold have enabled the development of new GPAs. However, modifying the core remains challenging due to the size and complexity of this compound family. The recent successful chemoenzymatic synthesis of vancomycin suggests that such an approach can be broadly applied. Herein, we describe the expansion of chemoenzymatic strategies to encompass type II GPAs bearing all aromatic amino acids through the production of the aglycone analogue of keratinimicin A, a GPA that is 5-fold more potent than vancomycin against Clostridioides difficile. In the course of these studies, we found that the cytochrome P450 enzyme OxyBker boasts both broad substrate tolerance and remarkable selectivity in the formation of the first aryl ether cross-link on the linear peptide precursors. The X-ray crystal structure of OxyBker, determined to 2.8 Å, points to structural features that may contribute to these properties. Our results set the stage for using OxyBker broadly as a biocatalyst toward the chemoenzymatic synthesis of diverse GPA analogues.


Asunto(s)
Antibacterianos , Vancomicina , Vancomicina/química , Antibacterianos/química , Glicopéptidos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Péptidos
14.
Curr Opin Chem Biol ; 75: 102309, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37163788

RESUMEN

The human microbiome has emerged as a source of bacterially produced, functional small molecules that help regulate health and disease, and their discovery and annotation has become a popular research topic. Identifying these molecules provides an essential step in unraveling the molecular mechanisms underlying biological outcomes. The relevance of specific bacterial members of the microbiome has been demonstrated in a variety of correlative studies, and there are many possible paths from these correlations to the responsible metabolites. Herein, we summarize two studies that have recently identified gut microbiome metabolites that modulate immune responses or promote physical activity. Aside from the deep insights gained, these studies provide blueprints for successfully uncovering the molecules and mechanisms that control important physiological pathways.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Bacterias/metabolismo
15.
Nat Chem ; 14(12): 1390-1398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316408

RESUMEN

The combination of next-generation DNA sequencing technologies and bioinformatics has revitalized natural product discovery. Using a bioinformatic search strategy, we recently identified ∼600 gene clusters in otherwise overlooked streptococci that code for ribosomal peptide natural products synthesized by radical S-adenosylmethionine enzymes. These grouped into 16 subfamilies and pointed to an unexplored microbiome biosynthetic landscape. Here we report the structure, biosynthesis and function of one of these natural product groups, which we term enteropeptins, from the gut microbe Enterococcus cecorum. We show three reactions in the biosynthesis of enteropeptins that are each catalysed by a different family of metalloenzymes. Among these, we characterize the founding member of a widespread superfamily of Fe-S-containing methyltransferases, which, together with an Mn2+-dependent arginase, installs N-methylornithine in the peptide sequence. Biological assays with the mature product revealed bacteriostatic activity only against the producing strain, extending an emerging theme of fratricidal or self-inhibitory metabolites in microbiome firmicutes.


Asunto(s)
Productos Biológicos , Familia de Multigenes , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , S-Adenosilmetionina/metabolismo , Péptidos/química , Productos Biológicos/química
16.
ACS Chem Biol ; 17(11): 3121-3130, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36228140

RESUMEN

Microorganisms have provided a rich source of therapeutically valuable natural products. Recent advances in whole genome sequencing and bioinformatics have revealed immense untapped potential for new natural products in the form of silent or "cryptic" biosynthetic genes. We herein conducted high-throughput elicitor screening (HiTES) in conjunction with cytotoxicity assays against selected cancer cell lines with the goal of uncovering otherwise undetectable cryptic metabolites with antiproliferative activity. Application to Streptomyces clavuligerus facilitated identification of clavamates A and B, two bioactive metabolites with unusual structural features, as well as facile activation of a gene cluster coding for tunicamycin, which exhibited strong growth-inhibitory activity. The elicitor we identified was pleiotropic, additionally leading to the discovery of a modified, bicyclic pentapeptide natural product. Our results highlight the utility of this approach in identifying new molecules with antiproliferative activity from even overexploited microbial strains.


Asunto(s)
Antibacterianos , Productos Biológicos , Antibacterianos/farmacología , Antibacterianos/química , Familia de Multigenes , Ensayos Analíticos de Alto Rendimiento/métodos , Productos Biológicos/farmacología , Biología Computacional
17.
J Am Chem Soc ; 144(39): 17876-17888, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36128669

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products with diverse activities and structures. RiPP classes are defined by the tailoring enzyme, which can introduce a narrow range of modifications or a diverse set of alterations. In the latter category, RiPPs synthesized by radical S-adenosylmethionine (SAM) enzymes, known as RaS-RiPPs, have emerged as especially divergent. A map of all RaS-RiPP gene clusters does not yet exist. Moreover, precursor peptides remain difficult to predict using computational methods. Herein, we have addressed these challenges and report a bioinformatic atlas of RaS-RiPP gene clusters in available microbial genome sequences. Using co-occurrence of RaS enzymes and transporters from varied families as a bioinformatic hook in conjunction with an in-house code to identify precursor peptides, we generated a map of ∼15,500 RaS-RiPP gene clusters, which reveal a remarkable diversity of syntenies pointing to a tremendous range of enzymatic and natural product chemistries that remain to be explored. To assess its utility, we examined one family of gene clusters encoding a YcaO enzyme and a RaS enzyme. We find the former is noncanonical, contains an iron-sulfur cluster, and installs a novel modification, a backbone amidine into the precursor peptide. The RaS enzyme was also found to install a new modification, a C-C crosslink between the unactivated terminal δ-methyl group of Ile and a Trp side chain. The co-occurrence search can be applied to other families of RiPPs, as we demonstrate with the emerging DUF692 di-iron enzyme superfamily.


Asunto(s)
Productos Biológicos , S-Adenosilmetionina , Amidinas , Biología Computacional , Hierro , Isoleucina/genética , Péptidos/química , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/metabolismo , Azufre , Triptófano
18.
Nature ; 610(7930): 199-204, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071162

RESUMEN

Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.


Asunto(s)
Vías Biosintéticas , Genes Microbianos , Histidina/análogos & derivados , Compuestos de Organoselenio , Selenio , Productos Biológicos/química , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Carbono/metabolismo , Enzimas , Ergotioneína , Genes Microbianos/genética , Histidina/biosíntesis , Metaboloma/genética , Micronutrientes/biosíntesis , Familia de Multigenes/genética , Proteínas , Selenio/metabolismo
19.
J Am Chem Soc ; 144(33): 14997-15001, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969232

RESUMEN

Human-associated streptococci have not been viewed as productive sources of natural products. Against expectation, bioinformatic searches recently revealed a large collection of diverse biosynthetic gene clusters coding for ribosomally synthesized and post-translationally modified peptides (RiPPs) in streptococcal genomes. The most abundant of these, the tqq gene cluster, is specific to Streptococcus suis, a burdensome agricultural pathogen and zoonotic agent. Herein, we used high-throughput elicitor screening to identify both small molecule elicitors and products of the tqq cluster. We show that the B3 vitamin niacin effectively elicits the tqq cluster leading to the biosynthesis of a family of RiPP natural products, which we termed threoglucins and characterized structurally. The defining feature of threoglucins is an aliphatic ether bond giving rise to a substituted 1,3-oxazinane heterocycle in the peptide backbone. Isolation of 22 congeners of threoglucins facilitated structure activity relationship studies, demonstrating the requirement for the oxazinane substructure and a Trp-Tyr C-terminal dyad for biological activity, namely antibiotic persistence and allolysis at low and high doses, respectively. Potential therapeutic applications of threoglucins are discussed.


Asunto(s)
Productos Biológicos , Niacina , Streptococcus suis , Productos Biológicos/química , Humanos , Niacina/metabolismo , Niacinamida/metabolismo , Péptidos/química , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Streptococcus suis/metabolismo
20.
ACS Bio Med Chem Au ; 2(4): 328-339, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35996476

RESUMEN

Radical S-adenosylmethionine (RaS) enzymes have quickly advanced to one of the most abundant and versatile enzyme superfamilies known. Their chemistry is predicated upon reductive homolytic cleavage of a carbon-sulfur bond in cofactor S-adenosylmethionine forming an oxidizing carbon-based radical, which can initiate myriad radical transformations. An emerging role for RaS enzymes is their involvement in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a natural product family that has become known as RaS-RiPPs. These metabolites are especially prevalent in human and mammalian microbiomes because the complex chemistry of RaS enzymes gives rise to correspondingly complex natural products with minimal cellular energy and genomic fingerprint, a feature that is advantageous in microbes with small, host-adapted genomes in competitive environments. Herein, we review the discovery and characterization of RaS-RiPPs from the human microbiome with a focus on streptococcal bacteria. We discuss the varied chemical modifications that RaS enzymes introduce onto their peptide substrates and the diverse natural products that they give rise to. The majority of RaS-RiPPs remain to be discovered, providing an intriguing avenue for future investigations at the intersection of metalloenzymology, chemical ecology, and the human microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA