Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Sci Rep ; 14(1): 3295, 2024 02 08.
Article En | MEDLINE | ID: mdl-38332121

This study aimed to explore the potential of metal oxides such as Titanate Scrolled Nanosheets (TNs) in improving the radiosensitivity of sarcoma cell lines. Enhancing the response of cancer cells to radiation therapy is crucial, and one promising approach involves utilizing metal oxide nanoparticles. We focused on the impact of exposing two human sarcoma cell lines to both TNs and ionizing radiation (IR). Our research was prompted by previous in vitro toxicity assessments, revealing a correlation between TNs' toxicity and alterations in intracellular calcium homeostasis. A hydrothermal process using titanium dioxide powder in an alkaline solution produced the TNs. Our study quantified the intracellular content of TNs and analyzed their impact on radiation-induced responses. This assessment encompassed PIXE analysis, cell proliferation, and transcriptomic analysis. We observed that sarcoma cells internalized TNs, causing alterations in intracellular calcium homeostasis. We also found that irradiation influence intracellular calcium levels. Transcriptomic analysis revealed marked disparities in the gene expression patterns between the two sarcoma cell lines, suggesting a potential cell-line-dependent nano-sensitization to IR. These results significantly advance our comprehension of the interplay between TNs, IR, and cancer cells, promising potential enhancement of radiation therapy efficiency.


Metal Nanoparticles , Sarcoma , Humans , Calcium , Oxides , Gene Expression Profiling , Sarcoma/genetics , Radiation Tolerance
2.
Biology (Basel) ; 12(11)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37997971

We describe a methodology to manipulate Caenorhabditis elegans (C. elegans) and irradiate the stem progenitor gonad region using three MeV protons at a specific developmental stage (L1). The consequences of the targeted irradiation were first investigated by considering the organogenesis of the vulva and gonad, two well-defined and characterized developmental systems in C. elegans. In addition, we adapted high-throughput analysis protocols, using cell-sorting assays (COPAS) and whole transcriptome analysis, to the limited number of worms (>300) imposed by the selective irradiation approach. Here, the presented status report validated protocols to (i) deliver a controlled dose in specific regions of the worms; (ii) immobilize synchronized worm populations (>300); (iii) specifically target dedicated cells; (iv) study the radiation-induced developmental alterations and gene induction involved in cellular stress (heat shock protein) and cuticle injury responses that were found.

3.
Biology (Basel) ; 12(7)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37508352

Time-lapse fluorescence imaging coupled to micro-irradiation devices provides information on the kinetics of DNA repair protein accumulation, from a few seconds to several minutes after irradiation. Charged-particle microbeams are valuable tools for such studies since they provide a way to selectively irradiate micrometric areas within a cell nucleus, control the dose and the micro-dosimetric quantities by means of advanced detection systems and Monte Carlo simulations and monitor the early cell response by means of beamline microscopy. We used the charged-particle microbeam installed at the AIFIRA facility to perform micro-irradiation experiments and measure the recruitment kinetics of two proteins involved in DNA signaling and repair pathways following exposure to protons and α-particles. We developed and validated image acquisition and processing methods to enable a systematic study of the recruitment kinetics of GFP-XRCC1 and GFP-RNF8. We show that XRCC1 is recruited to DNA damage sites a few seconds after irradiation as a function of the total deposited energy and quite independently of the particle LET. RNF8 is recruited to DNA damage sites a few minutes after irradiation and its recruitment kinetics depends on the particle LET.

4.
Photoacoustics ; 27: 100385, 2022 Sep.
Article En | MEDLINE | ID: mdl-36068801

How DNA damage and repair processes affect the biomechanical properties of the nucleus interior remains unknown. Here, an opto-acoustic microscope based on time-domain Brillouin spectroscopy (TDBS) was used to investigate the induced regulation of intra-nuclear mechanics. With this ultrafast pump-probe technique, coherent acoustic phonons were tracked along their propagation in the intra-nucleus nanostructure and the complex stiffness moduli and thicknesses were measured with an optical resolution. Osteosarcoma cells were exposed to methyl methanesulfonate (MMS) and the presence of DNA damage was tested using immunodetection targeted against damage signaling proteins. TDBS revealed that the intra-nuclear storage modulus decreased significantly upon exposure to MMS, as a result of the chromatin decondensation and reorganization that favors molecular diffusion within the organelle. When the damaging agent was removed and cells incubated for 2 h in the buffer solution before fixation the intra-nuclear reorganization led to an inverse evolution of the storage modulus, the nucleus stiffened. The same tendency was measured when DNA double-strand breaks were caused by cell exposure to ionizing radiation. TDBS microscopy also revealed changes in acoustic dissipation, another mechanical probe of the intra-nucleus organization at the nano-scale, and changes in nucleus thickness during exposure to MMS and after recovery.

5.
Phys Med ; 95: 94-115, 2022 Mar.
Article En | MEDLINE | ID: mdl-35149324

This paper describes in detail the implementation of Geant4 Livermore electromagnetic physics models based on the EPICS2017 database for the low energy transport of photons. These models describe four photon processes: gamma conversion, Compton scattering, photoelectric effect and Rayleigh scattering. New parameterizations based on EPICS2017 were performed for scattering functions of Compton effect, subshell cross-sections of the photoelectric effect and form factors of Rayleigh scattering, in order to improve the precision of fitted values compared to tabulated values. Comparisons between new and old parameterizations were also carried out to evaluate the precision of the new parameterizations. The models were tested through a comparative study, in which the mass attenuation coefficient was calculated for both total photon interaction and each process using Geant4 simulations based on EPICS2017 and EPDL97 respectively. The results obtained from the simulations were found in good agreement with the XCOM reference data.


Photons , Monte Carlo Method
6.
Phys Med ; 94: 85-93, 2022 Feb.
Article En | MEDLINE | ID: mdl-35007939

PURPOSE: Proton computed microtomography is a technique that reveals the inner content of microscopic samples. The density distribution of the material (in g·cm-3) is obtained from proton transmission tomography (STIM: Scanning Transmission Ion Microscopy) and the element content from X-ray emission tomography (PIXE: Particle Induced X-ray Emission). A precise quantification of chemical elements is difficult for thick samples, because of the variations of X-ray production cross-sections and of X-ray absorption. Both phenomena are at the origin of an attenuation of the measured X-ray spectra, which leads to an underestimation of the element content. Our aim is to quantify the accuracy of a specific correction method that we designed for thick samples. METHODS: In this study, we describe how the 3D variations in the mass density were taken into account in the reconstruction code, in order to quantify the correction according to the position of the proton beam and the position and aperture angle of the X-ray detector. Moreover, we assess the accuracy of the reconstructed densities using Geant4 simulations on numerical phantoms, used as references. RESULTS: The correction process was successfully applied and led, for the largest regions of interest (little affected by partial volume effects), to an accuracy ≤ 4% for phosphorus (compared to about 40% discrepancy without correction). CONCLUSION: This study demonstrates the accuracy of the correction method implemented in the tomographic reconstruction code for thick samples. It also points out some advantages offered by Geant4 simulations: i) they produce projection data that are totally independent of the inversion method used for the image reconstruction; ii) one or more physical processes (X-ray absorption, proton energy loss) can be artificially turned off, in order to precisely quantify the effect of the different phenomena involved in the attenuation of X-ray spectra.


Proton Therapy , Protons , Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , X-Rays
7.
Phys Med ; 65: 172-180, 2019 Sep.
Article En | MEDLINE | ID: mdl-31494371

Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm-3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.


Imaging, Three-Dimensional , Microscopy , Monte Carlo Method , Protons , Animals , Caenorhabditis elegans , Image Processing, Computer-Assisted , Phantoms, Imaging
8.
Sci Rep ; 9(1): 10568, 2019 07 22.
Article En | MEDLINE | ID: mdl-31332255

Charged-particle microbeams (CPMs) provide a unique opportunity to investigate the effects of ionizing radiation on living biological specimens with a precise control of the delivered dose, i.e. the number of particles per cell. We describe a methodology to manipulate and micro-irradiate early stage C. elegans embryos at a specific phase of the cell division and with a controlled dose using a CPM. To validate this approach, we observe the radiation-induced damage, such as reduced cell mobility, incomplete cell division and the appearance of chromatin bridges during embryo development, in different strains expressing GFP-tagged proteins in situ after irradiation. In addition, as the dosimetry of such experiments cannot be extrapolated from random irradiations of cell populations, realistic three-dimensional models of 2 cell-stage embryo were imported into the Geant4 Monte-Carlo simulation toolkit. Using this method, we investigate the energy deposit in various chromatin condensation states during the cell division phases. The experimental approach coupled to Monte-Carlo simulations provides a way to selectively irradiate a single cell in a rapidly dividing multicellular model with a reproducible dose. This method opens the way to dose-effect investigations following targeted irradiation.


Caenorhabditis elegans/radiation effects , Embryo, Nonmammalian/radiation effects , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/ultrastructure , Cell Division/radiation effects , Chromatin/radiation effects , Chromosomes/radiation effects , Embryo, Nonmammalian/ultrastructure , Embryonic Development/radiation effects , Microscopy, Confocal/methods , Monte Carlo Method , Radiometry
9.
Sci Rep ; 9(1): 6409, 2019 04 23.
Article En | MEDLINE | ID: mdl-31015541

Cell morphological analysis has long been used in cell biology and physiology for abnormality identification, early cancer detection, and dynamic change analysis under specific environmental stresses. This work reports on the remote mapping of cell 3D morphology with an in-plane resolution limited by optics and an out-of-plane accuracy down to a tenth of the optical wavelength. For this, GHz coherent acoustic phonons and their resonance harmonics were tracked by means of an ultrafast opto-acoustic technique. After illustrating the measurement accuracy with cell-mimetic polymer films we map the 3D morphology of an entire osteosarcoma cell. The resulting image complies with the image obtained by standard atomic force microscopy, and both reveal very close roughness mean values. In addition, while scanning macrophages and monocytes, we demonstrate an enhanced contrast of thickness mapping by taking advantage of the detection of high-frequency resonance harmonics. Illustrations are given with the remote quantitative imaging of the nucleus thickness gradient of migrating monocyte cells.


Cell Shape , Imaging, Three-Dimensional , Phonons , Single-Cell Analysis , Acoustics , Cell Line, Tumor , Humans , Macrophages/pathology , Monocytes/pathology , Optics and Photonics , Osteosarcoma/diagnostic imaging , Osteosarcoma/pathology , Polymethyl Methacrylate/chemistry
10.
J Vis Exp ; (132)2018 02 03.
Article En | MEDLINE | ID: mdl-29443063

Micro-analytical techniques based on chemical element imaging enable the localization and quantification of chemical composition at the cellular level. They offer new possibilities for the characterization of living systems and are particularly appropriate for detecting, localizing and quantifying the presence of metal oxide nanoparticles both in biological specimens and the environment. Indeed, these techniques all meet relevant requirements in terms of (i) sensitivity (from 1 up to 10 µg.g-1 of dry mass), (ii) micrometer range spatial resolution, and (iii) multi-element detection. Given these characteristics, microbeam chemical element imaging can powerfully complement routine imaging techniques such as optical and fluorescence microscopy. This protocol describes how to perform a nuclear microprobe analysis on cultured cells (U2OS) exposed to titanium dioxide nanoparticles. Cells must grow on and be exposed directly in a specially designed sample holder used on the optical microscope and in the nuclear microprobe analysis stages. Plunge-freeze cryogenic fixation of the samples preserves both the cellular organization and the chemical element distribution. Simultaneous nuclear microprobe analysis (scanning transmission ion microscopy, Rutherford backscattering spectrometry and particle induced X-ray emission) performed on the sample provides information about the cellular density, the local distribution of the chemical elements, as well as the cellular content of nanoparticles. There is a growing need for such analytical tools within biology, especially in the emerging context of Nanotoxicology and Nanomedicine for which our comprehension of the interactions between nanoparticles and biological samples must be deepened. In particular, as nuclear microprobe analysis does not require nanoparticles to be labelled, nanoparticle abundances are quantifiable down to the individual cell level in a cell population, independently of their surface state.


Electron Probe Microanalysis/methods , Metal Nanoparticles/chemistry , Oxides/chemistry , Cells, Cultured , Humans
11.
Sci Rep ; 7: 46684, 2017 04 25.
Article En | MEDLINE | ID: mdl-28440317

The reliance of all cell types on the mitochondrial function for survival makes mitochondria an interesting target when trying to understand their role in the cellular response to ionizing radiation. By harnessing highly focused carbon ions and protons using microbeams, we have performed in situ live cell imaging of the targeted irradiation of individual mitochondria stained with Tetramethyl rhodamine ethyl ester (TMRE), a cationic fluorophore which accumulates electrophoretically in polarized mitochondria. Targeted irradiation with both carbon ions and protons down to beam spots of <1 µm induced a near instant loss of mitochondrial TMRE fluorescence signal in the targeted area. The loss of TMRE after targeted irradiation represents a radiation induced change in mitochondrial membrane potential. This is the first time such mitochondrial responses have been documented in situ after targeted microbeam irradiation. The methods developed and the results obtained have the ability to shed new light on not just mitochondria's response to radiation but to further elucidate a putative mechanism of radiation induced depolarization and mitochondrial response.


Image Processing, Computer-Assisted/methods , Membrane Potential, Mitochondrial , Microscopy, Fluorescence/methods , Mitochondria/pathology , Protons , A549 Cells , Fluorescent Dyes/metabolism , Humans , MCF-7 Cells , Mitochondria/metabolism , Mitochondria/radiation effects , Organometallic Compounds/metabolism , Staining and Labeling/methods
12.
Sci Rep ; 7: 41764, 2017 01 31.
Article En | MEDLINE | ID: mdl-28139723

As well as being a significant source of environmental radiation exposure, α-particles are increasingly considered for use in targeted radiation therapy. A better understanding of α-particle induced damage at the DNA scale can be achieved by following their tracks in real-time in targeted living cells. Focused α-particle microbeams can facilitate this but, due to their low energy (up to a few MeV) and limited range, α-particles detection, delivery, and follow-up observations of radiation-induced damage remain difficult. In this study, we developed a thin Boron-doped Nano-Crystalline Diamond membrane that allows reliable single α-particles detection and single cell irradiation with negligible beam scattering. The radiation-induced responses of single 3 MeV α-particles delivered with focused microbeam are visualized in situ over thirty minutes after irradiation by the accumulation of the GFP-tagged RNF8 protein at DNA damaged sites.


Alpha Particles , DNA Damage/radiation effects , DNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Alpha Particles/adverse effects , Cell Line, Tumor , DNA-Binding Proteins/genetics , Genes, Reporter , Histones/metabolism , Humans , Membranes, Artificial , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time-Lapse Imaging , Ubiquitin-Protein Ligases/genetics
13.
Nanotoxicology ; 11(1): 134-145, 2017 02.
Article En | MEDLINE | ID: mdl-28044465

Although titanium dioxide nanoparticles (TiO2 NPs) have been extensively studied, their possible impact on health due to their specific properties supported by their size and geometry, remains to be fully characterized to support risk assessment. To further document NPs biological effects, we investigated the impact of TiO2 NPs morphology on biological outcomes. To this end, TiO2 NPs were synthesized as nanoneedles (NNs), titanate scrolled nanosheets (TNs), gel-sol-based isotropic nanoparticles (INPs) and tested for perturbation of cellular homeostasis (cellular ion content, cell proliferation, stress pathways) in three cell types and compared to the P25. We showed that TiO2 NPs were internalized at various degrees and their toxicity depended on both titanium content and NPs shape, which impacted on intracellular calcium homeostasis thereby leading to endoplasmic reticulum stress. Finally, we showed that a minimal intracellular content of TiO2 NPs was mandatory to induce toxicity enlightening once more the crucial notion of internalized dose threshold beside the well-recognized dose of exposure.


Endoplasmic Reticulum Stress/drug effects , Nanoparticles/analysis , Nanoparticles/toxicity , Titanium/analysis , Titanium/toxicity , Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/genetics , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Keratinocytes , Particle Size , Real-Time Polymerase Chain Reaction , Surface Properties , Transcriptome/drug effects
14.
PLoS One ; 11(11): e0166364, 2016.
Article En | MEDLINE | ID: mdl-27851794

At very low radiation dose rates, the effects of energy depositions in cells by ionizing radiation is best understood stochastically, as ionizing particles deposit energy along tracks separated by distances often much larger than the size of cells. We present a thorough analysis of the stochastic impact of the natural radiative background on cells, focusing our attention on E. coli grown as part of a long term evolution experiment in both underground and surface laboratories. The chance per day that a particle track interacts with a cell in the surface laboratory was found to be 6 × 10-5 day-1, 100 times less than the expected daily mutation rate for E. coli under our experimental conditions. In order for the chance cells are hit to approach the mutation rate, a gamma background dose rate of 20 µGy hr-1 is predicted to be required.


Background Radiation , Computer Simulation , Escherichia coli/radiation effects , Radiation, Ionizing , Dose-Response Relationship, Radiation , Electrons , Likelihood Functions
15.
Anal Chem ; 86(15): 7311-9, 2014 Aug 05.
Article En | MEDLINE | ID: mdl-25006686

Assessing in situ nanoparticles (NPs) internalization at the level of a single cell is a difficult but critical task due to their potential use in nanomedicine. One of the main actual challenges is to control the number of internalized NPs per cell. To in situ detect, track, and above all quantify NPs in a single cell, we propose an approach based on a multimodal correlative microscopy (MCM), via the complementarity of three imaging techniques: fluorescence microscopy (FM), scanning electron microscopy (SEM), and ion beam analysis (IBA). This MCM was performed on single targeted individual primary human foreskin keratinocytes (PHFK) cells cultured and maintained on a specifically designed sample holder, to probe either dye-modified or bare NPs. The data obtained by both FM and IBA on dye-modified NPs were strongly correlated in terms of detection, tracking, and colocalization of fluorescence and metal detection. IBA techniques should therefore open a new field concerning specific studies on bare NPs and their toxicological impact on cells. Complementarity of SEM and IBA analyses provides surface (SEM) and in depth (IBA) information on the cell morphology as well as on the exact localization of the NPs. Finally, IBA not only provides in a single cell the in situ quantification of exogenous elements (NPs) but also that all the other endogenous elements and the subsequent variation of their homeostasis. This unique feature opens further insights in dose-dependent response analyses and adds the perspective of a better understanding of NPs behavior in biological specimens for toxicology or nanomedicine purposes.


Metal Nanoparticles , Microscopy/methods , Oxides/chemistry , Single-Cell Analysis
16.
Nanotoxicology ; 5(2): 125-39, 2011 Jun.
Article En | MEDLINE | ID: mdl-21425910

Deciphering the molecular basis of toxicology mechanism induced by nanoparticles (NPs) remains an essential challenge. Ion Beam Analysis (IBA) was applied in combination with Transmission Electron Microscopy and Confocal Microscopy to analyze human keratinocytes exposed to TiO(2)-NPs. Investigating chemical elemental distributions using IBA gives rise to a fine quantification of the TiO(2)-NPs uptake within a cell and to the determination of the intracellular chemical modifications after TiO(2)-NPs internalization. In addition, fluorescent dye-modified TiO(2)-NPs have been synthesized to allow their detection, precise quantification and tracking in vitro. The internalization of these TiO(2)-NPs altered the calcium homeostasis and induced a decrease in cell proliferation associated with an early keratinocyte differentiation, without any indication of cell death. Additionally, the relation between the surface chemistry of the TiO(2)-NPs and their in vitro toxicity is clearly established and emphasizes the importance of the calcium homeostasis alteration in response to the presence of TiO(2)-NPs.


Calcium/metabolism , Homeostasis , Keratinocytes/drug effects , Keratinocytes/physiology , Nanoparticles/toxicity , Titanium/toxicity , Actins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Equipment Failure Analysis , Fluorescent Dyes/chemistry , Humans , Keratinocytes/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Titanium/chemistry
17.
BMC Neurol ; 9: 46, 2009 Aug 24.
Article En | MEDLINE | ID: mdl-19703283

BACKGROUND: Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay. METHODS: Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA. RESULTS: The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model. CONCLUSION: Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.


Drug Evaluation, Preclinical , Friedreich Ataxia/drug therapy , Iron-Binding Proteins/genetics , Animals , Blotting, Western , Cell Line/cytology , Cell Proliferation , Cells, Cultured , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Gene Knockdown Techniques , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Frataxin
18.
Toxicol Lett ; 188(1): 26-32, 2009 Jul 10.
Article En | MEDLINE | ID: mdl-19433266

Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.


Cell Nucleus/metabolism , Cobalt/metabolism , Keratinocytes/metabolism , Magnesium/metabolism , Zinc/metabolism , Active Transport, Cell Nucleus , Cell Line , Cobalt/toxicity , Cytosol/metabolism , Electron Probe Microanalysis , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Homeostasis , Humans , Imaging, Three-Dimensional , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Synchrotrons
19.
Hum Mol Genet ; 14(4): 463-74, 2005 Feb 15.
Article En | MEDLINE | ID: mdl-15615771

Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.


Friedreich Ataxia/metabolism , Iron Regulatory Protein 1/metabolism , Metalloporphyrins/metabolism , Mitochondria/physiology , Oxidative Stress , Superoxide Dismutase/metabolism , Animals , Binding Sites , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cytosol/enzymology , Free Radical Scavengers/metabolism , Friedreich Ataxia/pathology , Gene Expression Profiling , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Manganese/metabolism , Mice , Mice, Knockout , Microarray Analysis , Neurons , Oxidation-Reduction , RNA/metabolism
20.
Hum Mol Genet ; 13(10): 1017-24, 2004 May 15.
Article En | MEDLINE | ID: mdl-15028670

Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associated with cardiomyopathy, is caused by severely reduced frataxin, a mitochondrial protein involved in Fe-S cluster assembly. We have recently generated mouse models that reproduce important progressive pathological and biochemical features of the human disease. Our frataxin-deficient mouse models initially demonstrate time-dependent intramitochondrial iron accumulation, which occurs after onset of the pathology and after inactivation of the Fe-S dependent enzymes. Here, we report a more detailed pathophysiological characterization of our mouse model with isolated cardiac disease by echocardiographic, biochemical and histological studies and its use for placebo-controlled therapeutic trial with Idebenone. The Fe-S enzyme deficiency occurs at 4 weeks of age, prior to cardiac dilatation and concomitant development of left ventricular hypertrophy, while the mitochondrial iron accumulation occurs at a terminal stage. From 7 weeks onward, Fe-S enzyme activities are strongly decreased and are associated with lower levels of oxidative stress markers, as a consequence of reduced respiratory chain activity. Furthermore, we demonstrate that the antioxidant Idebenone delays the cardiac disease onset, progression and death of frataxin deficient animals by 1 week, but does not correct the Fe-S enzyme deficiency. Our results support the view that frataxin is a necessary, albeit non-essential, component of the Fe-S cluster biogenesis, and indicate that Idebenone acts downstream of the primary Fe-S enzyme deficit. Furthermore, our results demonstrate that Idebenone is cardioprotective even in the context of a complete lack of frataxin, which further supports its utilization for the treatment of FRDA.


Benzoquinones/therapeutic use , Cardiomyopathy, Dilated/prevention & control , Friedreich Ataxia/drug therapy , Iron-Sulfur Proteins/metabolism , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Electrocardiography , Friedreich Ataxia/enzymology , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Mice , Mitochondria/pathology , Mitochondria/ultrastructure , Myocardium/pathology , Myocardium/ultrastructure , Oxidative Stress , Ubiquinone/analogs & derivatives , Frataxin
...