Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 35(8): 2997-3004, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30707589

RESUMEN

The ability to tune the electronic properties of oxide-bearing semiconductors such as Si/SiO2 or transparent metal oxides such as indium-tin oxide (ITO) is of great importance in both electronic and optoelectronic device applications. In this work, we describe a process that was conducted on n-type Si/SiO2 and ITO to induce changes in the substrate work function (WF). The substrates were modified by a two-step synthesis comprising a covalent attachment of coupling agents' monolayer followed by in situ anchoring reactions of polarizable chromophores. The coupling agents and chromophores were chosen with opposite dipole orientations, which enabled the tunability of the substrates' WF. In the first step, two coupling agents with opposite molecular dipole were assembled. The coupling agent with a negative dipole induced a decrease in WF of modified substrates, while the coupling agent with a positive dipole produced an increase in WFs of both ITO and Si substrates. The second modification step consisted of in situ anchoring reaction of polarizable chromophores with opposite dipoles to the coupling layer. This modification led to an additional change in the WFs of both Si/SiO2 and ITO substrates. The WF was measured by contact potential difference and modeled by density functional theory-based theoretical calculations of the WF for each of the assembly steps. A good fit was obtained between the calculated and experimental trends. This ability to design and tune the WF of ITO substrates was implemented in an organic electronic device with improved I- V characteristics in comparison to a bare ITO-based device.

2.
ACS Appl Mater Interfaces ; 9(51): 44873-44879, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206026

RESUMEN

In this work, we demonstrate the tunability of electronic properties of Si/SiO2 substrates by molecular and ionic surface modifications. The changes in the electronic properties such as the work function (WF) and electron affinity were experimentally measured by the contact potential difference technique and theoretically supported by density functional theory calculations. We attribute these molecular electronic effects mainly to the variations of molecular and surface dipoles of the ionic and neutral species. We have previously shown that for the alkylhalide monolayers, changing the tail group from Cl to I decreased the WF of the substrate. Here, we report on the opposite trend of WF changes, that is, the increase of the WF, obtained by using the anions of these halides from Cl- to I-. This trend was observed on self-assembled alkylammonium halide (-NH3+ X-, where X- = Cl-, Br-, or I-) monolayer-modified substrates. The monolayer's formation was supported by ellipsometry measurements, X-ray photoelectron spectroscopy, and atomic force microscopy. Comparison of the theoretical and experimental data suggests that the ionic surface dipole depends mainly on the polarizability and the position of the counter halide anion along with the organization and packaging of the layer. The described ionic modification can be easily used for facile tailoring and design of the electronic properties Si/SiO2 substrates for various device applications.

3.
J Colloid Interface Sci ; 505: 692-702, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28658655

RESUMEN

A successful methodology for obtaining hybrid films which allow thermal triggering and continuous, irreversible, control of their hydrophilicity/hydrophobicity nature was developed. Two types of poly(dimethylsiloxane)-silica (PDMS@SiO2) films were prepared for that purpose: A hydrophilic film in which the thermal treatment causes an irreversible gradual increase of hydrophobicity; and a hydrophobic film that turns more hydrophilic upon thermal treatment. The opposite directionality of the change is dictated by the film substrate, on which the same hybrid is deposited. In both cases the thermal treatment induced a phase separation which caused the change in hydrophobicity. The magnitude of change in hydrophilicity/hydrophobicity is continuously controllable in both types of films by either the temperature or heating time. The films were characterized before and after heating by a variety of methods, including contact angle (CA) measurements with the sessile drop and the tilting plate methods, and by X-ray photoelectron spectroscopy (XPS) analysis. A thorough kinetic study was carried out, following the progress of the changes in the wettability property of the surfaces. The kinetics analyses proved that the changes in the wettability in all cases are due to phase separation processes, the directionality of which is determined by the treatment of the substrate on which the films are deposited. By monitoring the change of wettability (ΔCA) at various temperatures, an Arrhenius plot was obtained from which the activation energy and Arrhenius pre-exponential factor for the phase separation were derived, corroborating the proposed mechanism. To the best of our knowledge, this is the first use of phase separation behavior of a hybrid film in order to apply irreversible, thermally controllable change of surface wettability, tailored to proceed in opposite directions, and the first kinetic study of such a process.

4.
PLoS One ; 4(2): e4516, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19223975

RESUMEN

Non-Homologous End Joining (NHEJ) is one of the two major pathways of DNA Double Strand Breaks (DSBs) repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(D)J recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(D)J recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Síndromes de Inmunodeficiencia/genética , Mutación , Roturas del ADN de Doble Cadena , Reparación del ADN , Trastornos por Deficiencias en la Reparación del ADN/genética , Humanos
5.
J Am Chem Soc ; 130(12): 4158-65, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18314981

RESUMEN

Electronic structures at the Si/SiO2/molecule interfaces were studied by Kelvin probe techniques (contact potential difference) and compared to theoretical values derived by the Helmholtz equation. Two parameters influencing the electronic properties of n-type <100> Si/SiO2 substrates were systematically tuned: the molecular dipole of coupling agent molecules comprising the layer and the surface coverage of the chromophoric layer. The first parameter was checked using direct covalent grafting of a series of trichlorosilane-containing coupling agent molecules with various end groups causing a different dipole with the same surface number density. It was found that the change in band bending (DeltaBB) clearly indicated a major effect of passivation due to two-dimensional polysiloxane network formation, with minor differences resulting from the differences in the end groups' capacity to act as "electron traps". The change in electron affinity (DeltaEA) parameter increased upon increasing the dipole of the end group comprising the monolayer, resulting in a range of 600 mV. Moreover, a shielding effect of the aromatic spacer compared with the aliphatic spacer was found and estimated to be about 200 mV. The density effect was examined using the 4-[4-(N,N-dimethylamino phenyl)azo]pyridinium halide chromophore which has a calculated dipole of more than 10 D. It was clearly shown that upon increasing surface chromophoric coverage an increase in the electronic effects on the Si substrate was observed. However, a major consequence of depolarization was also detected while comparing the experimental and calculated values.


Asunto(s)
Membranas Artificiales , Silicio/química , Electrones , Estructura Molecular , Silanos/síntesis química , Silanos/química , Dióxido de Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...