Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 9141, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644371

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


BCG Vaccine , Bacterial Proteins , DNA-Binding Proteins , Interferon-gamma , Mycobacterium tuberculosis , Protein Processing, Post-Translational , Humans , Interferon-gamma/metabolism , Bacterial Proteins/immunology , BCG Vaccine/immunology , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mycobacterium tuberculosis/immunology , Recombinant Proteins/immunology , Oligodeoxyribonucleotides/pharmacology , Tuberculosis/prevention & control , Tuberculosis/immunology , CpG Islands , Mycobacterium smegmatis/immunology , Mycobacterium smegmatis/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Female
2.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Article En | MEDLINE | ID: mdl-38294180

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


BCG Vaccine , Mycobacterium bovis , Animals , Mice , BCG Vaccine/genetics , Tokyo , Mycobacterium bovis/genetics , Lymphocyte Activation , Genetic Engineering , Vaccines, Synthetic
3.
Sci Rep ; 13(1): 14157, 2023 08 29.
Article En | MEDLINE | ID: mdl-37644087

Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro, and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H2O2 and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81-240) than downregulated (5-175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (sigI), maintenance of DNA integrity (mutT1), REDOX balance (WhiB3), and host interactions (PE/PE_PGRS). Thus, this study shows MDP1's importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.


BCG Vaccine , Renal Insufficiency, Chronic , Animals , Mice , Hydrogen Peroxide , DNA-Binding Proteins/genetics , Acclimatization
...