Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39113229

RESUMEN

A new and innovative rolled graphene oxide (roll-GO)/poly-m-methylaniline (PmMA) core-shell nanocomposite has been successfully synthesized using an in situ polymerization technique. This eco-friendly and cost-effective material shows great promise due to its antimicrobial properties. The characterization of the nanocomposite involved X-ray diffraction and Fourier transform infrared spectroscopy to analyze its structure and functional groups, whereas scanning electron microscopy and transmission electron microscopy (TEM) were utilized to examine its morphology. TEM analysis revealed the formation of roll-GO, forming multi-walled tubes with inner and outer diameters of 50 and 70 nm, respectively. Optical analysis demonstrated an enhanced bandgap in the nanocomposite, with bandgap values of 2.38 eV for PmMA, 2.67 eV for roll-GO, and 1.65 eV for roll-GO/PmMA. The antibacterial efficacy of the nanocomposite was tested against Gram-positive bacteria, including Bacillus subtilis and Staphylococcus aureus, as well as Gram-negative bacteria such as Escherichia coli and Salmonella sp. The well diffusion method was used to determine the inhibition zones, revealing that the nanocomposite demonstrated broad-spectrum antibacterial activity against all the pathogens tested. The largest inhibition zones were observed for B. subtilis, followed by S. aureus, E. coli, and Salmonella sp. Notably, the inhibition zones increased when the samples were exposed to light compared to dark conditions, with increases of 33 and 18 mm noted for B. subtilis. This enhanced activity under light exposure is attributed to the photocatalytic properties of the nanocomposite. The antibacterial mechanism is based on both adsorption and degradation processes. Moreover, antibacterial activity was found to increase with increasing concentrations of nanoparticles, ranging from 100 to 500 ppm. This suggests that the nanocomposite has potential as an alternative to antibiotics, especially considering the growing issue of bacterial resistance. The promising results obtained from the inhibition zones make these nanocomposites suitable for various applications. Currently, the research team is working on the development of a prototype utilizing these antimicrobial particles within commercial bottles for sterilization purposes in factories and companies.

2.
Sci Rep ; 14(1): 15227, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956146

RESUMEN

Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.

3.
ACS Omega ; 9(27): 29205-29225, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005764

RESUMEN

Developing proficient organic solar cells with improved optoelectronic properties is still a matter of concern. In the current study, with an aspiration to boost the optoelectronic properties and proficiency of organic solar cells, seven new small-molecule acceptors (Db1-Db7) are presented by altering the central core of the reference molecule (DBD-4F). The optoelectronic aspects of DBD-4F and Db1-Db7 molecules were explored using the density functional theory (DFT) approach, and solvent-state calculations were assessed utilizing TD-SCF simulations. It was noted that improvement in photovoltaic features was achieved by designing these molecules. The results revealed a bathochromic shift in absorption maxima (λmax) of designed molecules reaching up to 776 nm compared to 736 nm of DBD-4F. Similarly, a narrow band gap, low excitation energy, and reduced binding energy were also observed in newly developed molecules in comparison with the pre-existing DBD-4F molecule. Performance improvement can be indicated by the high light-harvesting efficiency (LHE) of designed molecules (ranging from 0.9992 to 0.9996 eV) compared to the reference having a 0.9991 eV LHE. Db4 and Db5 exhibited surprisingly improved open-circuit voltage (V OC) values up to 1.64 and 1.67 eV and a fill factor of 0.9198 and 0.9210, respectively. Consequently, these newly designed molecules can be considered in the future for practical use in manufacturing OSCs with improved optoelectronic and photovoltaic attributes.

5.
Foods ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928886

RESUMEN

Chlorella vulgaris (C.V) is known for its high protein and nutrient contents and has been touted as a potential functional ingredient in food products. For this study, beef burgers were formulated with varying levels of Chlorella vulgaris fortification (0%, 0.5%, 1%, and 1.5% by weight). The nutritional composition, including proximate analysis and mineral content, was determined for each treatment group. The quality characteristics evaluated included thiobarbituric acid (TBA), total volatile base nitrogen (TVBN), pH, and total acidity. The study included extracting the active substances from Chlorella vulgaris using three solvents, 50% ethanol, 95% ethanol, and water, to evaluate the effect on the antimicrobial and antioxidant activity. The results showed that the water extract had the highest total phenolic content (183.5 mg gallic acid equivalent per gram) and the highest flavonoid content (54 mg quercetin per gram). The aqueous extract had the highest content of total antioxidants, followed by the 95% ethanol and 50% ethanol extracts. Meanwhile, the 50% ethanol extract showed the best antimicrobial activity, while the aqueous extract had less of an effect on Gram-positive bacteria and no effect on E. coli. For the burger treatments, at the end of the storage period, it was observed that the microbial load of the treatments decreased compared to the control, and there was a high stability in the total volatile base nitrogen (TVBN) values for the treatments compared to the control, reaching a value of 22.4 at month 5, which is well above the acceptable limit, indicating spoilage. The pH values were higher for all of the treatments, with a lower total acidity for all of the treatments compared to the control. In conclusion, utilizing Chlorella vulgaris algae as a natural preservative to extend the freshness of burgers is a sustainable and innovative approach to food preservation. By harnessing the power of this green superfood, we not only enhance the shelf life of our food products but also contribute to a healthier and more environmentally friendly food industry.

6.
J Mol Model ; 30(6): 190, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809306

RESUMEN

CONTEXT: For the advancement in fields of organic and perovskite solar cells, various techniques of structural alterations are being employed on previously reported chromophores. In this study, the end-capped engineering is carried out on DBT-4F (R) by modifying terminal acceptors to improve optoelectronic and photovoltaic attributes. Seven molecules (AD1-AD7) are modeled using different push-pull acceptors. DFT/B3LYP/6-31G along with its time-dependent approach (TD-DFT) are on a payroll to investigate ground state geometries, absorption maxima (λmax), energy gap (Eg), excitation energy (Ex), internal reorganization energy, light harvesting efficiency (LHE), dielectric constant, open circuit voltage (VOC), fill factor (FF), etc. of OSCs. AD1 displayed the lowest band gap (1.76 eV), highest λmax (876 nm), lowest Ex (1.41 eV), and lowest binding energy (0.21 eV). Among various calculated parameters, all of the sketched molecules demonstrated greater dielectric constant when compared to R. The highest dielectric constant was exhibited by AD3 (56.26). AD5 exhibited maximum LHE (0.9980). Lower reorganization energies demonstrated improved charge mobility. AD5 and AD7 (1.63 and 1.68 eV) have higher values of VOC than R (1.51 eV). All novel molecules having outperforming attributes will be better candidates to enhance the efficacy of OSCs for future use. METHODS: Precisely, a DFT and TD-DFT analysis on all of the proposed organic molecules were conducted, using the functional MPW1PW91 at 6-31G (d,p) basis set to examine their optoelectronic aspects, additionally the solvent-state computations were studied with a TD-SCF simulation. For all these simulations, Guassian 09 and GuassView 5.0 were employed. Moreover, the Origin 6.0, Multiwfn 3.8, and PyMOlyze 1.1 software were utilized for the visual depiction of the graphs of absorption, TDM, and DOS, respectively of the studied molecules. A number of crucial aspects such as FMOs, bandgaps, light-harvesting efficiency, electrostatic potential, dipole moment, ionization potential, open-circuit voltage, fill factor, binding energy, interaction coefficient, chemical hardness-softness, and electrophilicity index were also investigated for the studied molecules.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124082, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479227

RESUMEN

Heavy metals have been widely applied in industry, agriculture, and other fields because of their outstanding physics and chemistry properties. They are non-degradable even at low concentrations, causing irreversible harm to the human and other organisms. Therefore, it is of great significance to develop high accuracy and sensitivity as well as stable techniques for their detection. Raman scattering spectroscopy and atomic absorption spectrophotometer (AAS) were used parallelly to detect heavy metal ions such as Hg, Cd, and Pb of different concentrations in fish samples. The concentration of the heavy metals is varied from 5 ppb to 5 ppm. Despite the satisfactory recoveries of AAS, their drawbacks are imperative for an alternative technique. In Raman scattering spectroscopy, the intensities and areas of the characteristic peaks are increased with increasing the concentration of the heavy metals. For Hg concentration ≥ 1 ppm, a slight shift is observed in the peak position. The obtained values of peak intensity and peak area are modeled according to Elvoich, Pseudo-first order, Pseudo-second order, and asymptotic1 exponential model. The best modeling was obtained using the Elovich model followed by the asymptotic1 exponential model. The introduced Raman spectroscopy-based approach for on-site detection of trace heavy metal pollution in fish samples is rapid, low-cost, and simple to implement, increasing its visibility in food safety and industrial applications.


Asunto(s)
Mercurio , Metales Pesados , Animales , Humanos , Espectrometría Raman , Metales Pesados/análisis , Mercurio/análisis , Peces , Contaminación Ambiental , Cadmio/análisis , Monitoreo del Ambiente
8.
RSC Adv ; 14(10): 6776-6792, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38405070

RESUMEN

This study investigated the electrochemical behavior of NiCu, NiCu/GO, and NiCu/rGO nanocomposites designed by combining a modified Hummers' method and hydrothermal technique. The prepared nanocomposites are tested as electrocatalysts in direct alcohol oxidation fuel cells (DAFCs) to identify the role of GO and rGO as catalyst supports for the enhancement of the NiCu composite performance. The production of the NiCu/GO and NiCu/rGO composites was demonstrated by FTIR spectroscopy, EDX, and SEM analyses. In DAFCs experiments, NiCu/rGO has better catalytic activity than pure NiCu and NiCu/GO composites, whereas the use of rGO and GO as supports enhances the performance of NiCu by 468.2% and 377.7% in methanol and 255.6% and 105.9% in ethanol, respectively. The higher performance was caused by the increased density of active dots and the combined electronic effects in the designed catalysts. The stabilities of the catalysts and charge carriers' dynamics are studied using chronoamperometry and electrochemical impedance spectroscopy.

9.
J Mol Graph Model ; 129: 108722, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377792

RESUMEN

Modification of terminal acceptors of non-fullerene organic solar cell molecule with different terminal acceptors can help in screening of molecules to develop organic photovoltaic cells with improved performance. Thus, in this work, seven new molecules with an unfused core have been designed and thoroughly investigated. DFT/TD-DFT simulations were performed on studied molecules to explore the ground and excited state characteristics. UV-Visible analysis revealed the red shift in the absorption spectrum (reaching 781 nm) owing to their smaller energy gap up to 1.94 eV. Furthermore, transition density matrix analysis demonstrated that peripheral acceptors extract the electron density from the core effectively. The effectiveness of our investigated molecules as materials for high-performing organic photovoltaic cells has been shown by an examination of their electron and hole mobilities for fast charge transfer. When combined with PTB7-Th, all molecules displayed high open circuit voltage. XP5 molecule exhibited highest open circuit voltage (1.70 eV) and lowest energy loss of 0.30 eV. All designed molecules exhibit the improved aforementioned parameters, which shows that these molecules can be used to develop competent solar devices in future.


Asunto(s)
Electrones
10.
ACS Omega ; 9(6): 6403-6422, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38375499

RESUMEN

Nonfullerene-based organic solar cells can be utilized as favorable photovoltaic and optoelectronic devices due to their enhanced life span and efficiency. In this research, seven new molecules were designed to improve the working efficiency of organic solar cells by utilizing a terminal acceptor modification approach. The perceived A2-D-A1-D-A2 configuration-based molecules possess a lower band gap ranging from 1.95 to 2.21 eV compared to the pre-existing reference molecule (RW), which has a band gap of 2.23 eV. The modified molecules also exhibit higher λmax values ranging from 672 to 768 nm in the gaseous and 715-839 nm in solvent phases, respectively, as compared to the (RW) molecule, which has λmax values at 673 and 719 nm in gas and chloroform medium, respectively. The ground state geometries, molecular planarity parameter, and span of deviation from the plane were analyzed to study the planarity of all of the molecules. The natural transition orbitals, the density of state, molecular electrostatic potential, noncovalent interactions, frontier molecular orbitals, and transition density matrix analysis of all studied molecules were executed to validate the optoelectronic properties of these molecules. Improved charge mobilities and dipole moments were observed, as newly designed molecules possessed lower internal reorganization energies. The open circuit voltage (Voc) of W4, W5, W6, and W7 among newly designed molecules was improved as compared to the reference molecule. These results elaborate on the superiority of these novel-designed molecules over the pre-existing (RW) molecule as potential blocks for better organic solar cell applications.

11.
ACS Omega ; 8(48): 45384-45404, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075832

RESUMEN

Improving the charge mobility and optoelectronic properties of indacenodithiophene-based small molecule acceptors is a key challenge to improving overall efficiency. In this current research, seven newly designed molecules (DT1-DT7) comprising the indacenodithiophene-based core are presented to tune energy levels, enhance charge mobility, and improve the photovoltaic performance of IDTV-ThIC molecules via density functional theory. All the molecules were designed by end-capped modification by substituting terminal acceptors of IDTV-ThIC with strong electron-withdrawing moieties. Among all the examined structures, DT1 has proved itself a superior molecule in multiple aspects, including higher λmax in chloroform (787 nm) and gaseous phase (727 nm), narrow band gap (2.16 eV), higher electron affinity (3.31 eV), least excitation energy (1.57 eV), and improved charge mobility due to low reorganization energy and higher excited state lifetime (2.37 ns) when compared to the reference (IDTV-ThIC) and other molecules. DT5 also showed remarkable improvement in different parameters, such as the lowest exciton binding energy (0.41 eV), leading to easier charge moveability. The improved open-circuit voltage of DT4 and DT5 makes them proficient molecules exhibiting the charge transfer phenomenon. The enlightened outcomes of these molecules can pave a new route to develop efficient organic solar cell devices using these molecules, especially DT1, DT4, and DT5.

12.
J Parasitol Res ; 2023: 5840827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146315

RESUMEN

Ticks are a common parasite that affect many animals by causing slowed growth, reduced milk output, and financial losses for industries that depend on animal hides and skins. From June to December 2017, participatory and conventional investigations on tick infestation in camels and cattle were conducted in Kebribayah and Afdem districts of Ethiopia's Somali Regional State. The aim of this study was to determine the prevalence and density of ticks in these animals and establish strategic control measures to enhance livestock productivity and livelihoods in pastoral areas. The current study found that the prevalence of tick infestation in Kebribayah and Afdem districts was 83.3% and 86.8%, respectively. Rhipicephalus pulchellus (48.9%) was identified as the most common tick species in camels and cattle, followed by Amblyomma gemma (26.3%), Hyalomma truncatum (11.6%), Amblyomma lepidum (6.7%), and Amblyomma variegatum (6.5%). Among the variables considered, age and body condition score were significant risk factors (p < 0.001). Tick density varied depending on the recorded months and seasons (p < 0.001), with the highest mean tick density occurring in November (32.69 ± 21.750) and during the wet season (28.56 ± 19.750). Livestock owners in Kebribayah and Afdem ranked topical acaricide application as the most effective tick control method, followed by ivermectin injections, with the traditional hand removal method being the least effective. These rankings were consistent across both districts, and there was moderate agreement among livestock keepers from both regions regarding the best method. Afdem livestock keepers had slightly weak agreement on high tick burden in spring (W = 0.475, p = 0.127), and Kebribayah livestock keepers showed slightly strong agreement in tick burden across seasons (W = 0.700, p = 0.038), with spring having a significantly higher burden than winter. Consequently, participatory appraisal indicated that ticks were important and prevalent ectoparasites in the study area. Finally, strategic tick control appropriate for specific management and production environments should be implemented biannually in wet seasons.

13.
ACS Omega ; 8(45): 42492-42510, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024709

RESUMEN

In the current study, six nonfullerene small acceptor molecules were designed by end-group modification of terminal acceptors. Density functional theory calculations of all designed molecules were performed, and optoelectronic properties were computed by employing different functionals. Every constructed molecule has a significant bathochromic shift in the maximum absorption value (λmax) except AM6. AM1-AM4 molecules represented a narrow band gap (Eg) and low excitation energy values. The AM1-AM4 and AM6 molecules have higher electron mobility. Comparing AM2 to the reference molecule reveals that AM2 has higher hole mobilities. Compared to the reference molecule, all compounds have excellent light harvesting efficiency values compared to AM1 and AM2. The natural transition orbital investigation showed that AM5 and AM6 had significant electronic transitions. The open-circuit voltage (Voc) values of the computed molecules were calculated by combining the designed acceptor molecules with PTB7-Th. In light of the findings, it is concluded that the designed molecules can be further developed for organic solar cells (OSCs) with superior photovoltaic abilities.

14.
ACS Omega ; 8(46): 43792-43812, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027352

RESUMEN

In this quantum approach, by adding bridge/π-spacer fragments between the donor and acceptor parts of a newly constructed DF-PCIC (A-D-A type) molecule, it is the aim to improve the photovoltaic characteristics of organic solar cells (OSCs). After π-spacer insertion into the reference molecule (DF-R), six new molecules (DF-M1 to DF-M6) were designed. The optoelectronic attributes of newly inspected molecules were theoretically calculated using MPW1PW91/6-31G(d,p) level of theory. All newly proposed molecules possessed a lower band gap (Eg), a higher value of absorption, lower reorganization energy, greater dipole moment, and lower energies of excitations than the DF-R molecule. The frontier molecular orbital study proclaimed that the DF-M1 molecule has the lowest band gap of 1.62 eV in comparison to the 2.41 eV value of DF-R. Absorption properties represented that DF-M1 and DF-M2 molecules show the highest absorption values of up to 1006 and 1004 nm, respectively, in the near-infrared region. Regarding the reorganization energy, DF-M2 has the lowest value of λe (0.0683896 eV) and the lowest value of λh (0.1566471 eV). DF-M2 and DF-M5 manifested greater dipole moments with the values of 5.514665 and 7.143434 D, respectively. The open circuit voltage (VOC) of all the acceptors was calculated with J61, a donor complex. DF-M4 and DF-M6 molecules showed higher values of VOC and fill factor than the DF-R molecule. Based on the given results, it was supposed that all the newly presented molecules might prove themselves to be better than the reference and thus might be of great interest to experimentalists. Thus, they are suggested to be used to develop proficient OSC devices with improved photovoltaic prospects in the near future.

15.
Nanomaterials (Basel) ; 13(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37887943

RESUMEN

Gas sensing is of significant importance in a wide range of disciplines, including industrial safety and environmental monitoring. In this work, a low-cost SILAR (Successive Ionic Layer Adsorption and Reaction) technique was employed to fabricate pure CuO, Zn-doped CuO, and Na-doped CuO nanotextured films to efficiently detect CO2 gas. The structures, morphologies, chemical composition, and optical properties of all films are characterized using different tools. All films exhibit a crystalline monoclinic phase (tenorite) structure. The average crystallite size of pure CuO was 83.5 nm, whereas the values for CuO/Zn and CuO/Na were 73.15 nm and 63.08 nm, respectively. Subsequently, the gas-sensing capabilities of these films were evaluated for the detection of CO2 in terms of sensor response, selectivity, recovery time, response time, and limits of detection and quantification. The CuO/Na film offered the most pronounced sensitivity towards CO2 gas, as evidenced by a sensor response of 12.8% at room temperature and a low limit of detection (LoD) of 2.36 SCCM. The response of this sensor increased to 64.5% as the operating temperature increased to 150 °C. This study thus revealed a brand-new CuO/Na nanostructured film as a highly effective and economically viable sensor for the detection of CO2.

16.
Nanomaterials (Basel) ; 13(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836308

RESUMEN

In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the electrodeposition current, time, barrier layer, and Au coating on the morphology of the resultant nanostructures were investigated using field emission scanning electron microscopy. Energy dispersive X-ray and X-ray diffraction were used to analyze the structural parameters and elemental composition of the ZnO/ZnAl2O4/Au nanoarray, and the Kirkendall effect was confirmed. The developed ZnO/ZnAl2O4/Au electrode was applied to remove organic dyes from aqueous solutions, including methylene blue (MB) and methyl orange (MO). Using a 3 cm2 ZnO/ZnAl2O4/Au sample, the 100% dye removal for 20 ppm MB and MO dyes at pH 7 and 25 °C was achieved after approximately 50 and 180 min, respectively. According to the kinetics analysis, the pseudo-second-order model controls the dye adsorption onto the sample surface. AAOM/Au and ZnO/ZnAl2O4/Au nanoarrays are also used as pH sensor electrodes. The sensing capability of AAOM/Au showed Nernstian behavior with a sensitivity of 65.1 mV/pH (R2 = 0.99) in a wide pH range of 2-9 and a detection limit of pH 12.6, whereas the ZnO/ZnAl2O4/Au electrode showed a slope of 40.1 ± 1.6 mV/pH (R2 = 0.996) in a pH range of 2-6. The electrode's behavior was more consistent with non-Nernstian behavior over the whole pH range under investigation. The sensitivity equation was given by V(mV) = 482.6 + 372.6 e-0.2095 pH at 25 °C with R2 = 1.0, which could be explained in terms of changes in the surface charge during protonation and deprotonation.

17.
Adv Colloid Interface Sci ; 321: 103032, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37883848

RESUMEN

Development and the application of Sn-based materials have become more prevalent in recent years due to concerns regarding the energy crisis, environmental pollution, and the urgent need of constructing inexpensive and highly effective photocatalysis. The recent advancement in Sn-based materials for efficient photocatalysts, such as Sn alloys, Sn oxides, Sn sulfides, Sn selenides, Sn niobates, Sn tantalites, and Sn tungstates, is summarized in this study. Several design ideas for increasing the photoactivity of Sn-based materials in various photocatalytic applications are emphasized. In addition, we considered their present applications in energy generation (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (air purification and wastewater treatment). As a result, the current review will deepen the reader's understanding of the properties and potential uses of Sn-based materials in photocatalysis. Hence, this paper will serve as a guide in promoting the domain of Sn-based materials for future photocatalytic technologies.

18.
Sci Rep ; 13(1): 18398, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884608

RESUMEN

For the sake of people's health and the safety of the environment, more efforts should be directed towards the fabrication of gas sensors that can operate effectively at room temperature (RT). In this context, increased attention has been paid to developing gas sensors based on rare-earth (RE)-doped transparent conducting oxides (TCO). In this report, lanthanum-doped zinc oxide (La-doped ZnO) films were fabricated by sol-gel and spin-coating techniques. XRD analysis revealed the hexagonal structure of the ZnO films, with preferred growth along the (002) direction. The crystallite size was decreased from 33.21 to 26.41 nm with increasing La content to 4.0 at.%. The UV-vis-NIR indicating that the films are highly transparent (˃ 80%), La-doping increased the UV blocking ability of the films and narrowed the optical band gap (Eg) from 3.275 to 3.125 eV. Additionally, La-doping has influenced the refractive index of the samples. Gas sensing measurements were performed at ambient temperature (30 °C) and a relative humidity (RH) of 30%, employing different flow rates of carbon dioxide (CO2) gas used synthetically with air. Among the evaluated sensors, the ZnO: 4.0 at.% La sensor exhibited the most significant gas response, with a value of 114.22%. This response was observed when the sensor was subjected to a flow rate of 200 SCCM of CO2 gas. Additionally, the sensor revealed a response time of 24.4 s and a recovery time of 44 s. The exceptional performance exhibited by the sensor makes it very appropriate for a wide range of industrial applications. Additionally, we assessed the effect of humidity, selectivity, reusability, repeatability, detection limit, and limit of quantification.

19.
Parasite Epidemiol Control ; 23: e00324, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37701882

RESUMEN

Livestock, mainly goats, are crucial for animal protein, household income, economic security, and wealth creation in the pastoral areas of eastern Ethiopia. However, gastrointestinal parasitosis poses a substantial challenge in this sector. A cross-sectional study was conducted in the Gursum district of the Somali region, Ethiopia, to investigate the prevalence and intensity of gastrointestinal nematodes in goats and their associated risk factors. A total of 384 goat fecal samples were collected and examined using flotation and McMaster egg counting techniques for GIT nematodes. Coprological cultures have also been conducted for nematode identification. Fecal samples showed an overall parasite prevalence of 54.17%, with identified nematodes including Haemonchus (24%), Strongyloides (10.4%), Trichostrongles (6.5%), Nematodirus (6%), Oesophagostomum (5.5%) and Trichuris (1.87%). Older and poor body condition animals had higher chances of hosting nematodes than younger (OR = 0.245; CI = 0.144-0.417) and good body condition animals (OR = 0.069; CI = 0.030-0.157), according to multivariate logistic regression analysis. Quantitative examination of eggs revealed light 75(36.06%), moderate 99(47.60%), and heavy infection (n = 34, 16.35%). Analysis of the different study variables indicated that the age and body condition of the animals and the season of the year had a statistically significant association with the prevalence of GIT nematode infections (P-value <0.05). The high prevalence and intensity of GIT nematodiasis in goats from the study area warrants immediate attention and the implementation of strategic control and prevention measures.

20.
Environ Res ; 237(Pt 1): 116919, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597826

RESUMEN

Environmentally benign synthesis of nanocomposite, a pivotal facet of nanotechnology, and gaining prominence due to the increasing demand for facile, sustainable, and safe synthesis methods. The present research reports an facile/cost-effective method for the preparation of carbon dots (CDs) and carbon dot silver nanocomposites ( CD@AgNCs) via a hydrothermal treatment of peanut shells. The well-dispersed and spherical CDs with an average diameter of 5-6 nm were obtained and further employed for the preparation of CD@AgNCs. The formation of CD@AgNCs. was confirmed by optical and microscopic studies and ared shift in the λmax from 277 nm (CDs) to 450 nm (CD@AgNCs) with a size range of 30-40 nm was observed. The synthesized CD@AgNCs exhibit excellent catalytic potency for the reduction of 4-nitrophenol to 4-aminophenol, and also displaying a unique interaction and sensing ability towards heavy metal ions (Hg2+), causing a pronounced change in color from reddish-brown to transparent with limit of detection (LOD) of 23.47 ppm. Also, the prepared composite exhibit efficient antimicrobial potential against gram-negative (Escherichia coli) bacteria. Consequently, this study delves into a unified effective remediation platform with the integration of catalysis, sensing, and antimicrobial potentials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA