Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(26): 46501-46519, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558602

RESUMEN

The carrier density profile in metal-oxide-semiconductor (MOS) capacitors is computed under gating using two classical models - conventional drift-diffusion (CDD) and density-gradient (DG) - and a self-consistent Schrödinger-Poisson (SP) quantum model. Once calibrated the DG model approximates well the SP model while being computationally more efficient. The carrier profiles are used in optical mode computations to determine the gated optical response of surface plasmons supported by waveguides incorporating MOS structures. Indium tin oxide (ITO) is used as the semiconductor in the MOS structures, as the real part of its optical permittivity can be driven through zero to become negative under accumulation, enabling epsilon-near-zero (ENZ) effects. Under accumulation the predictions made by the CDD and SP models differ considerably, in that the former predicts one ENZ point but the latter predicts two. Consequently, the CDD model significantly underestimates perturbations in n e f f of surface plasmons (by ∼4×) and yields incorrect details in surface plasmon fields near ENZ points. The discrepancy is large enough to invalidate the CDD model in MOS structures on ENZ materials under accumulation, strongly motivating a quantum carrier model in this regime.

2.
Langmuir ; 38(39): 11983-11993, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150131

RESUMEN

Ultrasmall nanoparticles (NPs) with a high active surface area are essential for optoelectronic and photovoltaic applications. However, the structural stability and sustainability of these ultrasmall NPs at higher temperatures remain a critical problem. Here, we have synthesized the nanocomposites (NCs) of Ag NPs inside the silica matrix using the atom beam co-sputtering technique. The post-deposition growth of the embedded Ag NPs is systematically investigated at a wide range of annealing temperatures (ATs). A novel, fast, and effective procedure, correlating the experimental (UV-vis absorption results) and theoretical (quantum mechanical modeling, QMM) results, is used to estimate the size of NPs. The QMM-based simulation, employed for this work, is found to be more accurate in reproducing the absorption spectra over the classical/modified Drude model, which fails to predict the expected shift in the LSPR for ultrasmall NPs. Unlike the classical Drude model, the QMM incorporates the intraband transition of the conduction band electrons to calculate the effective dielectric function of metallic NCs, which is the major contribution of LSPR shifts for ultrasmall NPs. In this framework, a direct comparison is made between experimentally and theoretically observed LSPR peak positions, and it is observed that the size of NPs grows from 3 to 18 nm as AT increases from room temperature to 900 °C. Further, in situ grazing-incidence small- & wide-angle X-ray scattering and transmission electron microscopy measurements are employed to comprehend the growth of Ag NPs and validate the UV + QMM results. We demonstrate that, unlike chemically grown NPs, the embedded Ag NPs ensure greater stability in size and remain in an ultrasmall regime up to 800 °C, and beyond this temperature, the size of NPs increases exponentially due to dominant Ostwald ripening. Finally, a three-stage mechanism is discussed to understand the process of nucleation and growth of the silica-embedded Ag NPs.

3.
J Am Chem Soc ; 142(37): 15799-15814, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32881489

RESUMEN

Understanding the evolution of the structure and properties in metals from molecule-like to bulk-like has been a long sought fundamental question in science, since Faraday's 1857 work. We report the discovery of a Janus nanomolecule, Au191(SPh-tBu)66 having both molecular and metallic characteristics, explored crystallographically and optically and modeled theoretically. Au191 has an anisotropic, singly twinned structure with an Au155 core protected by a ligand shell made of 24 monomeric [-S-Au-S-] and 6 dimeric [-S-Au-S-Au-S-] staples. The Au155 core is composed of an 89-atom inner core and 66 surface atoms, arranged as [Au3@Au23@Au63]@Au66 concentric shells of atoms. The inner core has a monotwinned/stacking-faulted face-centered-cubic (fcc) structure. Structural evolution in metal nanoparticles has been known to progress from multiply twinned, icosahedral, structures in smaller molecular sizes to untwinned bulk-like fcc monocrystalline nanostructures in larger nanoparticles. The monotwinned inner core structure of the ligand capped Au191 nanomolecule provides the critical missing link, and bridges the size-evolution gap between the molecular multiple-twinning regime and the bulk-metal-like particles with untwinned fcc structure. The Janus nature of the nanoparticle is demonstrated by its optical and electronic properties, with metal-like electron-phonon relaxation and molecule-like long-lived excited states. First-principles theoretical explorations of the electronic structure uncovered electronic stabilization through the opening of a shell-closing gap at the top of the occupied manifold of the delocalized electronic superatom spectrum of the inner core. The electronic stabilization together with the inner core geometric stability and the optimally stapled ligand-capping anchor and secure the stability of the entire nanomolecule.

4.
J Chem Phys ; 150(14): 144116, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981241

RESUMEN

The change in refractive index around plasmonic nanoparticles upon binding to biomolecules is routinely used in localized surface plasmon resonance (LSPR)-based biosensors and in biosensing platforms. In this study, the plasmon sensitivity of hollow gold (Au) nanoshells is studied using theoretical modeling where the influence of shape, size, shell thickness, and aspect ratio is addressed. Different shapes of hollow Au nanoshells are studied that include sphere, disk, triangular prism, rod, ellipsoid, and rectangular block. Multilayered Mie theory and discrete dipole approximation were used to determine the LSPR peak position and LSPR sensitivity as a function of size, shell thickness, shape, and aspect ratio. The change in LSPR peak wavelength per unit refractive index is defined as the sensitivity, and interesting results were obtained from the analysis. The rectangular block and rod-shaped Au nanoshells have shown maximum LSPR sensitivity when compared to other shaped Au nanoshells. In addition, increased sensitivity was observed for higher aspect ratio as well as for smaller shell thicknesses. The results are rationalized based on the inner and outer surface plasmonic coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA