Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Alzheimers Dement ; 20(4): 2906-2921, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460116

INTRODUCTION: Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS: We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aß, tau, α-synuclein, and TDP-43. RESULTS: Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aß/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION: A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS: Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.


Alzheimer Disease , Biological Products , Dementia , Proteostasis Deficiencies , TDP-43 Proteinopathies , Humans , alpha-Synuclein/genetics , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology , Dementia/genetics , DNA-Binding Proteins , Alzheimer Disease/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
2.
J Neuropathol Exp Neurol ; 82(9): 760-768, 2023 08 21.
Article En | MEDLINE | ID: mdl-37528055

Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects approximately one-third of older individuals and is associated with cognitive impairment. However, there is a highly incomplete understanding of the genetic determinants of LATE neuropathologic changes (LATE-NC) in diverse populations. The defining neuropathologic feature of LATE-NC is TDP-43 proteinopathy, often with comorbid hippocampal sclerosis (HS). In terms of genetic risk factors, LATE-NC and/or HS are associated with single nucleotide variants (SNVs) in 3 genes-TMEM106B (rs1990622), GRN (rs5848), and ABCC9 (rs1914361 and rs701478). We evaluated these 3 genes in convenience samples of individuals of African ancestry. The allele frequencies of the LATE-associated alleles were significantly different between persons of primarily African (versus European) ancestry: In persons of African ancestry, the risk-associated alleles for TMEM106B and ABCC9 were less frequent, whereas the risk allele in GRN was more frequent. We performed an exploratory analysis of data from African-American subjects processed by the Alzheimer's Disease Genomics Consortium, with a subset of African-American participants (n = 166) having corroborating neuropathologic data through the National Alzheimer's Coordinating Center (NACC). In this limited-size sample, the ABCC9/rs1914361 SNV was associated with HS pathology. More work is required concerning the genetic factors influencing non-Alzheimer disease pathology such as LATE-NC in diverse cohorts.


Alzheimer Disease , TDP-43 Proteinopathies , Humans , Alleles , Aging/pathology , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , TDP-43 Proteinopathies/pathology , Progranulins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Sulfonylurea Receptors/genetics
3.
Neurobiol Dis ; 174: 105880, 2022 Nov.
Article En | MEDLINE | ID: mdl-36191742

The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Genome-Wide Association Study , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
4.
Neurobiol Aging ; 111: 95-106, 2022 03.
Article En | MEDLINE | ID: mdl-34852950

The genetic locus containing the WWOX and MAF genes was implicated as a clinical Alzheimer's disease (AD) risk locus in two recent large meta-analytic genome wide association studies (GWAS). In a prior GWAS, we identified a variant in WWOX as a suggestive risk allele for hippocampal sclerosis. We hypothesized that the WWOX/MAF locus may be preferentially associated with non-plaque- and non-tau-related neuropathological changes (NC). Data from research participants with GWAS and autopsy measures from the National Alzheimer's Coordinating Center and the Religious Orders Study and the Rush Memory and Aging Project were meta-analyzed. Notably, no variants in the locus were significantly associated with ADNC. However, several WWOX/MAF variants had significant adjusted associations with limbic-predominant age-related TDP-43 encephalopathy NC (LATE-NC), HS, and brain arteriolosclerosis. These associations remained largely unchanged after adjustment for ADNC (operationalized with standard semiquantitative staging), suggesting that these associations are independent of ADNC. Thus, WWOX genetic variants were associated pathologically with LATE-NC, not ADNC.


Alzheimer Disease/genetics , Dementia/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Phenotype , Proto-Oncogene Proteins c-maf/genetics , TDP-43 Proteinopathies/genetics , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/genetics , Aged , Aged, 80 and over , Female , Humans , Male
5.
Acta Neuropathol Commun ; 9(1): 152, 2021 09 15.
Article En | MEDLINE | ID: mdl-34526147

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer's Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer's pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer's-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.


Apolipoproteins E/genetics , Hippocampus/pathology , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Progranulins/genetics , Sulfonylurea Receptors/genetics , Aged, 80 and over , Cohort Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Retrospective Studies , Sclerosis
6.
Acta Neuropathol ; 141(1): 1-24, 2021 01.
Article En | MEDLINE | ID: mdl-33098484

Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.


Brain/pathology , Intracranial Arteriosclerosis/pathology , Aged , Aged, 80 and over , Animals , Arterioles/pathology , Cerebral Amyloid Angiopathy , Cognition Disorders/etiology , Cognition Disorders/pathology , Cognition Disorders/psychology , Humans , Intracranial Arteriosclerosis/psychology , Neuroimaging
7.
J Food Sci ; 83(5): 1258-1264, 2018 May.
Article En | MEDLINE | ID: mdl-29668030

Short-wavelength ultraviolet (UV-C) irradiation is a nonthermal processing technique that is a possible alternative to the heat-pasteurization of tea beverages. This study investigated the effect of UV-C irradiation on the polyphenolic and total phenolic contents of a green tea beverage and analyzed cytotoxicity of irradiated green tea using a novel continuous flow-through UV system. UV-C fluence levels ranging from 0 to 240 mJ/cm2 were delivered to green tea, and polyphenols were chemically profiled. Continuous-flow UV-C irradiation of the green tea beverage at a fluence of 68 mJ/cm2  induced a minor reduction in the concentration of the most abundant catechin in green tea, (-)-epigallocatechin gallate (EGCG), from 145 to 131.1 µg/mL. The total phenolic content of the green tea beverage was 0.19 µg GAE/uL and remained constant at all UV fluence levels. The UV-treated green tea beverage showed no cytotoxic effects on normal intestinal cells with healthy colonic cells (CCD-18Co) maintained at 90% viability for the UV-treated green tea beverages and the control. The treated and nontreated green tea have comparable inhibitory effects on the survival of human colon cancer cells. Overall, these results demonstrate that the UV-C irradiation did not significantly deplete catechins or produce cytotoxic byproducts. PRACTICAL APPLICATION: Short wavelength ultraviolet (UV-C) irradiation is a nonthermal processing technique that is a possible alternative to the heat pasteurization of tea beverages. This study investigated the effect of UV-C irradiation on the antioxidant concentration of green tea and analyzed cytotoxicity of irradiated a green tea beverage using a novel continuous flow-through UV system. The results demonstrated that the UV-C irradiation did not significantly deplete catechins or produce cytotoxic byproducts.


Antioxidants/pharmacology , Catechin/pharmacology , Food Irradiation , Food Quality , Tea/chemistry , Ultraviolet Rays , Beverages/analysis , Caco-2 Cells , Catechin/analogs & derivatives , Catechin/analysis , Fibroblasts/cytology , Fibroblasts/drug effects , Food Analysis , HCT116 Cells , Humans , Polyphenols/analysis , Reactive Oxygen Species/chemistry , Tandem Mass Spectrometry
...