Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(7): 5901-5915, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245171

RESUMEN

BACKGROUND: Kashmir valley, India is a homeland to rice landraces like Zag, Nunbeoul, Qadirbeigh, Kawkadur, Kamad, Mushk Budji, etc., generally characterized by short grains, aroma, earliness and cold tolerance. Mushk Budji is a commercially important speciality rice known for its taste and aroma, nonetheless, is extremely vulnerable to blast disease. Through the use of the marker-assisted backcrossing (MABC) approach, a set of 24 Near-isogenic lines (NILs) was created, and the lines with the highest background genome recovery were chosen. The expression analysis was carried out for the component genes and other eight pathway genes related to blast resistance. RESULTS: The major blast resistance genes Pi9 (from IRBL-9W) and Pi54 (from DHMAS 70Q 164-1b) were incorporated following simultaneous-but-step-wise MABC. The NILs harbouring genes Pi9 + Pi54, Pi9 and Pi54 expressed resistance to isolate (Mo-nwi-kash-32) under controlled and natural field conditions. The loci controlling ETI (effector triggered immunity) included the gene Pi9 and showed 61.18 and 60.27 fold change in relative gene expression in Pi54 + Pi9 and Pi9 carrying NILs against RP Mushk Budji. Pi54 was up regulated and showed 41 and 21 fold change in relative gene expression for NIL-Pi54 + Pi9 and NIL-Pi54, respectively. Among the pathway genes, LOC_Os01g60600 (WRKY 108) recorded 8 and 7.5 fold up regulation in Pi9 and Pi54 NILs. CONCLUSION: The NILs showed recurrent parent genome recovery (RPG) per cent of 81.67 to 92.54 and were on par in performance to recurrent parent Mushk Budji. The lines were utilized to study the expression of the loci controlling WRKYs, peroxidases and chitinases that confer overall ETI response.


Asunto(s)
Genes de Plantas , Oryza , Genes de Plantas/genética , Oryza/genética , Resistencia a la Enfermedad/genética , Expresión Génica , India , Enfermedades de las Plantas/genética
2.
Funct Integr Genomics ; 22(6): 1315-1330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35931837

RESUMEN

Apple scab is caused by an ascomycete fungus, Venturia inaequalis (Cke.) Wint., which is one of the most severe disease of apple (Malus × Domestica Borkh.) worldwide. The disease results in 30-40% fruit loss annually and even complete loss in some places. Owing to the evolving susceptibility of resistant apple genotypes harboring R-genes to new variants of V. inaequalis, a comparative transcriptome analysis using Illumina (HiSeq) platform of three scab-resistant (Florina, Prima, and White Dotted Red) and three susceptible (Ambri, Vista Bella, and Red Delicious) apple genotypes was carried out to mine new scab resistance genes. The study led to the identification of 822 differentially expressed genes in the tested scab-resistant and scab-susceptible apple genotypes. The most upregulated genes uniformly expressed in resistant varieties compared to susceptible ones were those coding for 17.3 kDa class II heat shock protein-like, chaperone protein ClpB1, glutathione S-transferase L3-like protein, B3 domain-containing protein At3g18960-like, transcription factor bHLH7, zinc finger MYM-type protein 1-like, and nine uncharacterized proteins, besides three lncRNAs. The genes that were downregulated in susceptible and upregulated in resistant cultivars were those coding for non-specific lipid transfer protein GPI-anchored 1, rust resistance kinase Lr10-like, disease resistance protein RPS6-like, and many uncharacterized proteins. DESeq2 analysis too revealed 20 DEGs that were upregulated in scab-resistant cultivars. Furthermore, a total of 361 genes were significantly upregulated in scab-susceptible variety, while 461 were found downregulated (P value < 0.05 and Log2 (FC) > 1). The differentially expressed genes (DEGs) were related to various pathways, i.e., metabolic, protein processing, biosynthesis of secondary metabolites, plant hormone signal transduction, autophagy, ubiquitin-mediated proteolysis, plant-pathogen interaction, lipid metabolism, and protein modification pathways. Real-time expression of a set of selected twelve DEGs further validated the results obtained from RNA-seq. Overall, these findings lay the foundation for investigating the genetic basis of apple scab resistance and defense pathways that might have a plausible role in governing scab resistance in apple against V. inaequalis.


Asunto(s)
Ascomicetos , Malus , Malus/genética , Malus/metabolismo , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA