Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
PLoS One ; 19(3): e0300072, 2024.
Article En | MEDLINE | ID: mdl-38527023

Stroke is a leading cause of death and long-term disability which can cause oxidative damage and inflammation of the neuronal cells. Retinoic acid is an active metabolite of vitamin A that has various beneficial effects including antioxidant and anti-inflammatory effects. In this study, we investigated whether retinoic acid modulates oxidative stress and inflammatory factors in a stroke animal model. A middle cerebral artery occlusion (MCAO) was performed on adult male rats to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the peritoneal cavity for four days before MCAO surgery. The neurobehavioral tests were carried out 24 h after MCAO and cerebral cortex tissues were collected. The cortical damage was assessed by hematoxylin-eosin staining and reactive oxygen species assay. In addition, Western blot and immunohistochemical staining were performed to investigate the activation of glial cells and inflammatory cytokines in MCAO animals. Ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) were used as markers of microglial and astrocyte activation, respectively. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were used as representative pro-inflammatory cytokines. Results showed that MCAO damage caused neurobehavioral defects and histopathological changes in the ischemic region and increased oxidative stress. Retinoic acid treatment reduced these changes caused by MCAO damage. We detected increases in Iba-1 and GFAP in MCAO animals treated with vehicle. However, retinoic acid alleviated increases in Iba-1 and GFAP caused by MCAO damage. Moreover, MCAO increased levels of nuclear factor-κB and pro-inflammatory cytokines, including TNF-α and IL-1ß. Retinoic acid alleviated the expression of these inflammatory proteins. These findings elucidate that retinoic acid regulates microglia and astrocyte activation and modulates pro-inflammatory cytokines. Therefore, this study suggests that retinoic acid exhibits strong antioxidant and anti-inflammatory properties by reducing oxidative stress, inhibiting neuroglia cell activation, and preventing the increase of pro-inflammatory cytokines in a cerebral ischemia.


Brain Ischemia , Neuroprotective Agents , Stroke , Rats , Male , Animals , Tumor Necrosis Factor-alpha/metabolism , Tretinoin/pharmacology , Tretinoin/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Stroke/drug therapy , Stroke/metabolism , Brain Ischemia/drug therapy , Neuroglia/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
J Vet Med Sci ; 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37344388

Ischemic stroke causes severe brain damage and high mortality. Chlorogenic acid is a phenolic compound that has neuroprotective properties. B-cell lymphoma-2 (Bcl-2) family proteins are important for apoptosis regulation. Bcl-2 and Bcl-xL are proteins that inhibit apoptosis, and Bax and Bad induce apoptosis. In this study, we investigated whether chlorogenic acid exerts a neuroprotective effect against ischemic stroke damage by regulating Bcl-2 family proteins. We performed middle cerebral artery occlusion (MCAO) to induce ischemic stroke in adult male rats. The animals were intraperitoneally injected with normal saline as a vehicle or chlorogenic acid (30 mg/kg) 2 hr after MCAO. Cerebral cortex tissue was collected 24 hr after MCAO damage. MCAO damage caused histopathological changes and increased the number of terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling-positive cells, while chlorogenic acid attenuated these changes. RT-qPCR and Western blot results showed decreases in Bcl-2 and Bcl-xL expression and an increase in Bax and Bad expression in MCAO animals. However, chlorogenic acid treatment attenuated these changes due to MCAO damage. The interaction of Bax with Bcl-2 or Bcl-xL decreased in MCAO animals, and the binding of Bad with Bcl-2 or Bcl-xL increased. However, chlorogenic acid treatment reduced these changes. Chlorogenic acid also prevented MCAO-induced increases in caspase-3 and caspase-9 expression. This study provides evidence that chlorogenic acid has neuroprotective effects against MCAO damage by modulating Bcl-2 family proteins including Bcl-2, Bcl-xL, Bax, and Bad. Furthermore, chlorogenic acid regulates the interaction between Bcl-2 family proteins. In conclusion, chlorogenic acid contributes to neuroprotection against ischemic stroke damage by controlling Bcl-2 family proteins.

3.
Lab Anim Res ; 39(1): 12, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37271817

BACKGROUND: Cerebral ischemia is a serious neurological disorder that can lead to high morbidity and mortality. Chlorogenic acid is a polyphenol compound with antioxidant that can regulate proteins in cerebral ischemia. Middle cerebral artery occlusion (MCAO) surgery was performed to induce ischemic brain injury and was maintained for 24 h. Chlorogenic acid (30 mg/kg) or vehicle was administrated into the peritoneal cavity 2 h after MCAO surgery. The cerebral cortical tissues were collected for further study and a proteomic approach was performed to identify the proteins changed by chlorogenic acid in the MCAO animals. RESULTS: We found that chlorogenic acid alleviated in changes in adenosylhomocysteinase, glycerol-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4A-II, apolipoprotein A-I, and mu-crystallin. These proteins were reduced in MCAO animals with vehicle, and these reductions were attenuated by chlorogenic acid treatment. The mitigation of this reduction by chlorogenic acid was confirmed by the reverse transcription PCR technique. These proteins are associated with energy metabolism, protein synthesis, inflammation, and physiological metabolism. They are involved in the neuroprotective effect of chlorogenic acid. These results showed that chlorogenic acid alleviates the neurological disorders caused by MCAO and regulates the expression of proteins involved in neuroprotection. CONCLUSIONS: Therefore, our findings provide evidence that chlorogenic acid plays a neuroprotective role in stroke animal models by controlling specific proteins.

4.
Lab Anim Res ; 39(1): 3, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36782340

BACKGROUND: Epigallocatechin gallate (EGCG) is a flavonoid compound commonly found in green tea. It exhibits antioxidant, anti-inflammatory, and neuroprotective effects in cerebral ischemia. Protein phosphatase 2 A (PP2A) is an important serine/threonine phosphatase enzyme involved in various cellular activities. PP2A subunit B is present abundantly in the brain and plays an important role in the nervous system. We investigated the effect of EGCG on the expression level of PP2A subunit B in cerebral ischemia caused by middle cerebral artery occlusion (MCAO). EGCG (50 mg/kg) or vehicle was injected into the peritoneal cavity prior to MCAO surgery. Neurological behavior tests were performed 24 h after MCAO, and right cerebral cortex tissue was collected. Cerebral ischemia caused serious neurological abnormalities, which were alleviated by EGCG administration. We screened the expression of PP2A subunits containing A, B, and C using reverse-transcription PCR. We confirmed that PP2A subunit B exhibited significant changes in MCAO animals compared to subunits A and C. We continuously examined the expression of PP2A subunit B protein in MCAO animals using Western blot analysis. RESULTS: EGCG alleviated the reduction of PP2A subunit B protein by MCAO damage. In addition, immunohistochemistry demonstrated a decrease in the number of PP2A subunit B-positive cells in the cerebral cortex, and EGCG attenuated this decrease. Maintenance of PP2A subunit B is important for normal brain function. CONCLUSION: Therefore, our findings suggest that EGCG exerts neuroprotective effects against cerebral ischemia through modulation of PP2A subunit B expression.

5.
Lab Anim Res ; 38(1): 41, 2022 Dec 21.
Article En | MEDLINE | ID: mdl-36539905

BACKGROUND: Chlorogenic acid, a phenolic compound, has potent antioxidant and neuroprotective properties. The ubiquitin-proteasome system is an important regulators of neurodevelopment and modulators of neuronal function. This system is associated with neurodevelopment and neurotransmission through degradation and removal of damaged proteins. Activation of the ubiquitin-proteasome system is a critical factor in preventing cell death. We have previously reported a decrease in the activity of the ubiquitin-proteasome system during cerebral ischemia. This study investigated whether chlorogenic acid regulates the ubiquitin-proteasome system in an animal stroke model. In adult rats, middle cerebral artery occlusion (MCAO) surgery was performed to induce focal cerebral ischemia. Chlorogenic acid (30 mg/kg) or normal saline was injected into the abdominal cavity 2 h after MCAO surgery, and cerebral cortex tissues were collected 24 h after MCAO damage. RESULTS: Chlorogenic acid attenuated neurobehavioral disorders and histopathological changes caused by MCAO damage. We identified the decreases in ubiquitin C-terminal hydrolase L1, ubiquitin thioesterase OTUB1, proteasome subunit α type 1, proteasome subunit α type 3, and proteasome subunit ß type 4 expression using a proteomics approach in MCAO animals. The decrease in these proteins was alleviated by chlorogenic acid. In addition, the results of reverse transcription-polymerase chain reaction confirmed these changes. The identified proteins were markedly reduced in MCAO damage, while chlorogenic acid prevented these reductions induced by MCAO. The decrease of ubiquitin-proteasome system proteins in ischemic damage was associated with neuronal apoptosis. CONCLUSIONS: Our results showed that chlorogenic acid regulates ubiquitin-proteasome system proteins and protects cortical neurons from neuronal damage. These results provide evidence that chlorogenic acid has neuroprotective effects and maintains the ubiquitin-proteasome system in ischemic brain injury.

6.
J Vet Sci ; 23(6): e84, 2022 Nov.
Article En | MEDLINE | ID: mdl-36259103

BACKGROUND: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. OBJECTIVES: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. METHODS: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. RESULTS: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. CONCLUSIONS: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.


Brain Ischemia , Chlorogenic Acid , Stroke , Animals , Male , Rats , Apoptosis , bcl-Associated Death Protein/metabolism , Brain Ischemia/veterinary , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/veterinary , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/veterinary , 14-3-3 Proteins/metabolism
7.
Lab Anim Res ; 38(1): 13, 2022 May 13.
Article En | MEDLINE | ID: mdl-35562751

BACKGROUND: Retinoic acid is a major metabolite of vitamin A and exerts beneficial effects including anti-oxidant and anti-inflammatory activities in neurons. The ubiquitin-proteasome system is an important biological system that regulates cell survival. Ubiquitination regulates protein degradation and plays an important role in oxidative stress. Deubiquitinating enzymes cleave ubiquitin from proteins and control ubiquitination-induced degradation. We detected decreases in ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic damage. In this study, we investigated whether retinoic acid regulates the expression of deubiquitinating enzymes ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic injury. Right middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemic damage in male rats. Retinoic acid (5 mg/kg) or vehicle was intraperitoneally injected every day from 4 days before surgery. Neurological behavioral tests were performed 24 h after MCAO, and right cerebral cortical tissues were collected. RESULTS: MCAO damage caused neurological behavioral dysfunction, and retinoic acid alleviated these deficits. The identified proteins decreased in MCAO animals with vehicle, while retinoic acid treatment attenuated these decreases. The results of proteomic study were confirmed by a reverse transcription-PCR technique. Expressions of ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 were decreased in MCAO animals treated with vehicle. Retinoic acid treatment alleviated these MCAO-induced reductions. The ubiquitin-proteasome system plays an essential role in maintaining cell function and preserving cell shape against ischemic damage. CONCLUSIONS: These findings suggest that retinoic acid regulates ubiquitin- and proteasome-related proteins including ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in a brain ischemia model. Changes in these proteins are involved in the neuroprotective effects of retinoic acid.

8.
Neurosci Lett ; 773: 136495, 2022 03 16.
Article En | MEDLINE | ID: mdl-35108588

Ischemic stroke is the most common type of stroke and is caused by vascular closure. Chlorogenic acid is a polyphenolic compound that is present in various plants. It is used as a traditional oriental medicine because of its anti-oxidant and anti-inflammatory properties. We investigated whether chlorogenic acid mediates neuroprotective effects by regulating pro-inflammatory proteins. Focal cerebral ischemia was induced through middle cerebral artery occlusion (MCAO) surgery in adult rats. Chlorogenic acid (30 mg/kg) or vehicle was injected into the abdominal cavity 2 h after MCAO. Rats were sacrificed 24 h after MCAO surgery and brain tissues were isolated immediately. MCAO caused histopathological changes in the ischemic cerebral cortex, and chlorogenic acid attenuated these changes. Chlorogenic acid reduced MCAO-induced reactive oxygen species generation and oxidative stress increase in the cerebral cortex. Furthermore, cerebral ischemia increased the expression of ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), which are microglia and astrocyte activation markers, respectively. However, chlorogenic acid prevented MCAO-induced these increases. MCAO damage also increased the expression of nuclear factor-κB (NF-κB), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α). Chlorogenic acid treatment attenuated these increases caused by MCAO. These proteins are representative pro-inflammatory markers. This study confirmed that chlorogenic acid exerts an anti-oxidative effect and elucidated anti-inflammatory effect through regulating NF-κB, IL-1ß, and TNF-α on cerebral ischemia. Thus, we can suggest that chlorogenic acid has neuroprotective effects by reducing oxidative stress and controlling pro-inflammatory proteins against cerebral ischemic damage.


Brain Ischemia , Neuroprotective Agents , Animals , Anti-Inflammatory Agents/pharmacology , Brain Ischemia/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
9.
J Vet Sci ; 23(2): e26, 2022 Mar.
Article En | MEDLINE | ID: mdl-35187882

BACKGROUND: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. OBJECTIVES: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. METHODS: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. RESULTS: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. CONCLUSIONS: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.


Glutamic Acid , Parvalbumins , Animals , Apoptosis , Calcium/metabolism , Calcium-Binding Proteins/pharmacology , Cell Death , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Parvalbumins/genetics , Parvalbumins/metabolism , Parvalbumins/pharmacology , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley
10.
Neurochem Res ; 46(11): 3035-3049, 2021 Nov.
Article En | MEDLINE | ID: mdl-34327632

Epigallocatechin gallate (EGCG) is one of polyphenol that is abundant in green tea. It has anti-oxidative activity and exerts neuroprotective effects in ischemic brain damage. Ischemic conditions induce oxidative stress and result in cell death. Thioredoxin is a small redox protein that plays an important role in the regulation of oxidation and reduction. This study was designed to investigate the regulation of thioredoxin by EGCG in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in male Sprague-Dawley rats. The EGCG (50 mg/kg) or was administered before MCAO surgical operation. Neurological behavior test, reactive oxygen species (ROS), and lipid peroxidation (LPO) measurement were performed 24 h after MCAO. The cerebral cortex was isolated for further experiments. EGCG alleviated MCAO-induced neurological deficits and increases in ROS and LPO levels. EGCG also ameliorated the decrease in thioredoxin expression by MCAO. This finding was confirmed using various techniques such as Western blot analysis, reverse transcription PCR, and immunofluorescence staining. Results of immunoprecipitation showed that MCAO decreases the interaction between apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin, while EGCG treatment attenuates this decrease. EGCG also attenuated decrease of cell viability and thioredoxin expression in glutamate-exposed neuron in a dose-dependent manner. It alleviated the increase of caspase-3 by glutamate exposure. However, this effect of EGCG on caspase-3 change was weakened in thioredoxin siRNA-transfected neurons. These findings suggest that EGCG exerts a neuroprotective effect by regulating thioredoxin expression and modulating ASK1 and thioredoxin binding in ischemic brain damage.


Brain Ischemia/metabolism , Catechin/analogs & derivatives , Glutamic Acid/toxicity , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Thioredoxins/biosynthesis , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain Ischemia/drug therapy , Catechin/pharmacology , Catechin/therapeutic use , Cell Line, Transformed , Down-Regulation/drug effects , Down-Regulation/physiology , Male , Mice , Neurons/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley
11.
Neurosci Lett ; 760: 136085, 2021 08 24.
Article En | MEDLINE | ID: mdl-34174343

Cerebral ischemia leads to neuronal cell death, causes neurological disorder and permanent disability. Chlorogenic acid has antioxidant, anti-inflammatory, and anti-apoptotic properties. This study investigated the neuroprotective effects of chlorogenic acid against cerebral ischemia. Focal cerebral ischemia was induced in male adult rats via middle cerebral artery occlusion (MCAO). Chlorogenic acid (30 mg/kg) or vehicle was injected in the intraperitoneal cavity 2 h after MCAO operation. Neurological behavior tests were performed 24 h after MCAO, brain edema and infarction were measured. Oxidative stress was assessed by investigating the levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) levels. MCAO damage leaded to severe neurobehavioral deficits, increased ROS and LPO levels, and induced brain edema and infarction. MCAO damage caused histopathological damages and increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the cerebral cortex. However, chlorogenic acid treatment improved neurological behavioral deficits caused by MCAO and attenuated the increase in ROS and LPO levels. It also alleviated MCAO-induced brain edema, infarction, and histopathological lesion. Chlorogenic acid treatment attenuated the increase in the number of TUNEL-positive cells in the cerebral cortex of MCAO animals. We also investigated caspase proteins expression to elucidate the neuroprotective mechanism of chlorogenic acid. Caspase-3, caspase-7, and poly ADP-ribose polymerase expression levels were increased in the MCAO damaged cortex, while chlorogenic acid mitigated these increases. These results showed that MCAO injury leads to severe neurological damages and chlorogenic acid exerts neuroprotective effects by regulating oxidative stress and caspase proteins expressions. Thus, our findings suggest that chlorogenic acid acts as a potent neuroprotective agent by modulating the apoptotic-related proteins.


Chlorogenic Acid/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Apoptosis/drug effects , Brain/blood supply , Brain/drug effects , Brain/pathology , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology
12.
Neurosci Lett ; 757: 135979, 2021 07 13.
Article En | MEDLINE | ID: mdl-34023410

Cerebral ischemia is a neurological disorder that leads to cognitive decline and high mortality. Retinoic acid is a metabolite of vitamin A that has anti-inflammatory and anti-apoptotic effects. This study investigated whether retinoic acid prevents neuronal cell damage on focal cerebral ischemia through modulating apoptosis signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in adult male rats. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally for 4 days prior to MCAO. Neurological behavior deficit tests were performed 24 h after MCAO. Brain edema and infarct volume were measured, and TUNEL histochemistry was carried out. We also investigated the changes in apoptosis-related proteins including bcl-2 family proteins and caspases. MCAO injury induced severe neurological behavior deficits and brain edema. It also increased infarct volume, histopathological damages, and the number of TUNEL-positive cells in cerebral cortex. However, retinoic acid pretreatment attenuated MCAO-induced neurological behavior deficits, brain edema, and infarction. It also alleviated histopathological lesion and decreased the number of TUNEL-positive cells. Bcl-2 and bax proteins are representative bcl-2 family proteins. MCAO injury induced a decrease in bcl-2 expression and an increase in bax expression, and retinoic acid pretreatment alleviated these changes. MCAO injury caused a decrease in bcl-2/bax expression ratio in cerebral cortex, while retinoic acid restored this decrease by MCAO. Moreover, our result showed increases in caspase-9, caspase-3, PARP protein levels in MCAO-operated animals. Retinoic acid pretreatment prevented these increases. We identified the changes in cleaved forms of these proteins, similar to the changes in full-length protein. Activation of caspases and PARP proteins are considered to be representative apoptosis indicators. This study showed that retinoic acid regulates bcl-2 family proteins and caspase proteins in focal cerebral ischemia. Thus, our findings demonstrate that retinoic acid exhibits a neuroprotective effect against ischemic damage by modulating apoptosis signaling pathway.


Infarction, Middle Cerebral Artery/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Tretinoin/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Disease Models, Animal , Humans , Infarction, Middle Cerebral Artery/pathology , Male , Neurons/pathology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Tretinoin/therapeutic use
13.
J Syst Sci Complex ; 34(4): 1301-1323, 2021.
Article En | MEDLINE | ID: mdl-33564220

This paper proposes various stages of the hepatitis B virus (HBV) besides its transmissibility and nonlinear incidence rate to develop an epidemic model. The authors plan the model, and then prove some basic results for the well-posedness in term of boundedness and positivity. Moreover, the authors find the threshold parameter R 0, called the basic/effective reproductive number and carry out local sensitive analysis. Furthermore, the authors examine stability and hence condition for stability in terms of R 0. By using sensitivity analysis, the authors formulate a control problem in order to eradicate HBV from the population and proved that the control problem actually exists. The complete characterization of the optimum system was achieved by using the 4th-order Runge-Kutta procedure.

14.
Lab Anim Res ; 36: 32, 2020.
Article En | MEDLINE | ID: mdl-32983956

Baicalin is a natural flavonoid that exerts a variety of pharmaceutical effects such as anti-inflammatory and antioxidant. Lipopolysaccharide (LPS) is an endotoxin that releases inflammatory cytokines and induces inflammatory response. This study was investigated the anti-inflammatory mechanism of baicalin against LPS-induced inflammatory response in the hippocampus. Adult mice were randomly grouped into control, LPS-treated, and LPS and baicalin co-treated animals. LPS (250 µg/kg/day) and baicalin (10 mg/kg/day) were administered intraperitoneally for 7 consecutive days. We measured neuroglia cells activation and inflammatory factors activation using Western blot analysis and immunofluorescence staining techniques. Ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) are widely used as microglia and astrocyte markers, respectively. LPS treatment increased Iba-1 and GFAP expression, while baicalin co-treatment attenuated this overexpression. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammation. Baicalin co-treatment alleviated LPS-induced increase of NF-κB in the hippocampus. In addition, LPS treatment upregulated pro-inflammatory cytokines including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). However, baicalin co-treatment prevented LPS-induced increases of IL-1ß and TNF-α in the hippocampus. Results from the present study showed that baicalin suppresses LPS-induced neuroinflammation by regulating microglia and astrocyte activation and modulating inflammatory factors in the hippocampus. Thus, these results demonstrate that baicalin has neuroprotective effect by alleviates microglia and astrocyte activation and modulates inflammatory response by suppressing NF-κB expression in hippocampus with neuroinflammation caused by LPS.

15.
J Vet Med Sci ; 81(9): 1359-1367, 2019 Oct 10.
Article En | MEDLINE | ID: mdl-31366818

Baicalin is a plant-derived flavonoid that has anti-inflammatory and anti-oxidative effects. We investigated an anti-inflammatory effect of baicalin against lipopolysaccharide (LPS)-induced damage in cerebral cortex. Adult mice were divided into control, LPS-treated, and LPS and baicalin co-treated animals. LPS (250 µg/kg/day) and baicalin (10 mg/kg/day) were intraperitoneally injected for 7 days. LPS treatment induced histopathological changes in cerebral cortex, whereas baicalin protected neuronal cells against LPS toxicity. Moreover, baicalin treatment attenuated LPS-induced increases of reactive oxygen species and oxidative stress in cerebral cortices. Ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) are known as markers of activated microglia and astrocyte, respectively. Results of Western blot and immunofluorescence staining showed that LPS exposure induces increases of Iba-1 and GFAP expressions, whereas baicalin alleviates LPS-induced increases of these proteins. Baicalin also prevented LPS-induced increase of nuclear factor kappa B (NF-κB). LPS treatment led to increases of pro-inflammatory factors including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Increases of these pro-inflammatory mediators were attenuated in baicalin co-treated animals. These results demonstrated that baicalin regulates neuroglia activation and modulates inflammatory factors in LPS-induced neuronal injury. Thus, our findings suggest that baicalin exerts a neuroinflammatory effect against LPS-induced toxicity through decreasing oxidative stress and inhibiting NF-κB mediated inflammatory factors, such as IL-1ß and TNF-α.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cerebral Cortex/drug effects , Flavonoids/pharmacology , Animals , Calcium-Binding Proteins/metabolism , Glial Fibrillary Acidic Protein/metabolism , Inflammation , Lipopolysaccharides , Male , Mice, Inbred C57BL , Microfilament Proteins/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
16.
J Vet Med Sci ; 81(7): 1047-1054, 2019 Jul 19.
Article En | MEDLINE | ID: mdl-31092742

Quercetin is a plant flavonoid that has anti-oxidant, anti-inflammatory, anti-cancer, and anti-ischemic properties. Moreover, quercetin exerts neuroprotective effects against focal cerebral ischemia. Protein phosphatase 2A (PP2A) is a form of serine/threonine phosphatase that modulates various biological functions. Among PP2A subunit types, subunit B exists abundantly in brain tissue and plays an essential function in nervous system. We previously reported the decrease of PP2A subunit B in focal cerebral animal model. This study explored the change of PP2A subunit B expression by quercetin treatment in cerebral ischemic animal model and glutamate-treated hippocampal-derived (HT22) cell culture. Quercetin (10 mg/kg) or vehicle was injected intraperitoneally into male rats before 30 min of middle cerebral artery occlusion (MCAO), and cerebral cortices were isolated 24 hr after MCAO. MCAO induced the neurological behavioral deficit and increased infarct volume. However, quercetin treatment attenuated the increase of neurological deficit and infarction. We detected the alleviation of MCAO-induced the decrease in PP2A subunit B by quercetin treatment using a proteomic approach. Reverse-transcription PCR and Western blot analyses confirmed lower PP2A subunit B expression levels in MCAO group with vehicle. However, quercetin treatment attenuated MCAO-induced this reduction. We also observed the neuroprotective effect of quercetin and the change of PP2A subunit B expression in glutamate-exposed HT22 cells. Glutamate exposure dramatically reduced cell viability and PP2A subunit B expression, and quercetin treatment significantly improved these decreases. We clearly showed that quercetin performs a neuroprotective function and modulates down-regulation of PP2A subunit B against MCAO injury and glutamate toxicity. Thus, our finding suggests that the regulation of PP2A subunit B by quercetin contributes to neuroprotective function in ischemic brain injury.


Brain Ischemia/prevention & control , Glutamic Acid/toxicity , Neuroprotective Agents/pharmacology , Protein Phosphatase 2/metabolism , Quercetin/pharmacology , Animals , Brain Ischemia/enzymology , Brain Ischemia/etiology , Cell Line, Transformed , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Male , Mice , Protein Phosphatase 2/genetics , Rats, Sprague-Dawley
17.
Lab Anim Res ; 35: 19, 2019.
Article En | MEDLINE | ID: mdl-32257907

Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 µg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.

18.
Lab Anim Res ; 34(4): 195-202, 2018 Dec.
Article En | MEDLINE | ID: mdl-30671105

Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. α-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of α-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in α-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in α-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in α-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that α-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing α-synuclein expression.

...