Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Environ Toxicol Pharmacol ; 108: 104452, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38663648

Individuals working in diverse fields are consistently exposed to work-related pollutants that can impact their overall health. The current study investigated the presence of pollutants in seven different occupational groups and their impact on human health. Biochemical and genetic approaches were employed. Heavy metals were determined by ICP-MS technique. Oxidative stress biochemical markers and molecular analysis of the glutathione transferases gene SNPs (GSTT1, GSTM1, GSTP1), catalase (CAT, rs7943316), and superoxide dismutase (SOD, rs17880487) was carried out. The results revealed a significantly higher quantity of Cd among five occupational groups. Catalase, malonaldehyde, and glutathione was significantly dysregulated. Molecular analysis of the gene SNPs suggests a probable relationship between the antioxidants and the phenotypic expression of the CAT, GSTP1, GSTT1, and GSTM1 SNPs. It is concluded that chronic exposure to occupational contaminants like Cd affects human health through oxidative stress in association with some of their gene SNPs.

2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35344, 2024 01.
Article En | MEDLINE | ID: mdl-37942693

The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.


Chitosan , Rats , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Oxygen/pharmacology , Escherichia coli , Staphylococcus aureus , Angiogenesis , Polyurethanes , Wound Healing , Carbonates , Anti-Bacterial Agents/pharmacology
3.
Toxics ; 11(9)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37755736

Persistent Organic Pollutants (POPs) such as dichlorodimethyltrichloroethane (DDT) are present and ubiquitous in the environment due to their resilient nature. DDT is a prevalent endocrine disruptor still found in detectable amounts in organisms and the environment even after its use was banned in the 1970s. Medline and Google Scholar were systematically searched to detect all relevant animal and human studies published in the last 20 years (January 2003 to February 2023) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. In total, 38 studies were included for qualitative synthesis. This systematic search and review indicated that exposure to DDT is associated with female reproductive health issues, such as reduced fecundability; increased risk of preterm/premature deliveries; increased periods of gestation; alterations in the synthesis of crucial reproductive hormones (Progesterone and Oxytocin) through ion imbalances and changes in prostaglandin synthesis, myometrial and stromal hypertrophy, and edema; and variations in uterine contractions through increased uterine wet weight. There was also limited evidence indicating DDT as a carcinogen sufficient to instigate reproductive cancers. However, this review only takes into account the in vitro studies that have established a possible pathway to understand how DDT impacts female infertility and leads to reproductive cancers. Links between the pathways described in various studies have been developed in this review to produce a summarized picture of how one event might lead to another. Additionally, epidemiological studies that specifically targeted the exposure to DDT of females belonging to various ethnicities have been reviewed to develop an overall picture of prevailing female reproductive health concerns in different nations.

4.
ACS Omega ; 8(29): 25808-25816, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37521645

Tamoxifen is the drug of choice as hormonal therapy for hormone receptor-positive breast cancers and can reduce the risk of breast cancer recurrence. However, oral tamoxifen has a low bioavailability due to liver and intestinal metabolic passes. To overcome this problem and utilize the potential of this drug to its maximum, inorganic nanoparticle carriers have been exploited and tested to increase its bioavailability. Biocompatibility and unique magnetic properties make iron oxide nanoparticles an excellent choice as a drug delivery system. In this study, we developed and tested a "green synthesis" approach to synthesize iron nanoparticles from green tea extract and coated them with agar for longer stability (AG-INPs). Later, these hybrid nanoparticles were conjugated with tamoxifen (TMX). By using this approach, we synthesized stable agar-coated tamoxifen-conjugated iron nanoparticles (TMX-AG-INPs) and characterized them with Fourier-transform infrared (FTIR) spectroscopy. The average particle size of AG-INPs was 26.8 nm, while the average particle size of tamoxifen-loaded iron nanoparticles, TMX-AG-INPs, was 32.1 nm, as measured by transmission and scanning electron microscopy. The entrapment efficiency of TMX-AG-INPs obtained by the drug release profile was 88%, with a drug loading capacity of 43.5%. TMX-AG-INPs were significantly (p < 0.001) efficient in killing breast cancer cells when tested in vitro on the established breast cancer cell line MCF-7 by cell viability assay, indicating their potential to control cell proliferation.

5.
Sci Rep ; 13(1): 10043, 2023 06 20.
Article En | MEDLINE | ID: mdl-37340022

Avian pathogenic E. coli (APEC) is associated with local and systemic infections in poultry, ducks, turkeys, and many other avian species, leading to heavy economical losses. These APEC strains are presumed to possess zoonotic potential due to common virulence markers that can cause urinary tract infections in humans. The prophylactic use of antibiotics in the poultry sector has led to the rapid emergence of Multiple Drug Resistant (MDR) APEC strains that act as reservoirs and put human populations at risk. This calls for consideration of alternative strategies to decrease the bacterial load. Here, we report isolation, preliminary characterization, and genome analysis of two novel lytic phage species (Escherichia phage SKA49 and Escherichia phage SKA64) against MDR strain of APEC, QZJM25. Both phages were able to keep QZJM25 growth significantly less than the untreated bacterial control for approximately 18 h. The host range was tested against Escherichia coli strains of poultry and human UTI infections. SKA49 had a broader host range in contrast to SKA64. Both phages were stable at 37 °C only. Their genome analysis indicated their safety as no recombination, integration and host virulence genes were identified. Both these phages can be good candidates for control of APEC strains based on their lysis potential.


Bacteriophages , Escherichia coli Infections , Poultry Diseases , Animals , Humans , Escherichia coli/genetics , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Bacteriophages/genetics , Birds/microbiology , Poultry , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens
6.
PLoS One ; 18(4): e0282579, 2023.
Article En | MEDLINE | ID: mdl-37027384

Male infertility is a complex and polygenic reproductive disease. 10-15% of the males are affected by idiopathic infertility conditions. Acetylcholine (ACh), a major neurotransmitter has been reported to play a non-neuronal role as well. Acetylcholinesterase (AChE) is the primary ACh hydrolyzing enzyme whose over or lower expression influence the availability of ACh for physiological roles. The purpose of the study was to find the possible impact and association of acetylcholinesterase, ACHE gene variant rs 17228602, and pro-inflammatory cytokines in clinically diagnosed infertile males. The study includes clinically diagnosed fifty non-infertile (control) and forty-five infertile males. Whole blood AChE enzymatic activity was measured. Genotyping of rs17228602 was carried out from peripheral blood by standard molecular methods. Pro-inflammatory cytokines were determined by the ELISA method. AChE enzyme was found to be significantly elevated in infertile than non-infertile males. ACHE SNP rs17228602 had shown significant association in dominant model (odd ratio = 0.378, 95% CI = 0.157-0.911, p-value 0.046). Pro-inflammatory cytokine IL-1ß was notably increased with statistical significance (p ≤0.05) in male infertile patients. The study concludes and speculates that AChE plays role in the pathogenesis of male infertility through the modulation of inflammatory pathways. Further studies in this direction may resolve the idiopathic cases of male infertility. Other variants of ACHE and the association of miRNA for the regulation of AChE in male infertility are suggested for further insight.


Acetylcholinesterase , Infertility, Male , Humans , Male , Acetylcholine , Acetylcholinesterase/genetics , Cytokines/genetics , Infertility, Male/genetics
7.
Medicine (Baltimore) ; 101(26): e29776, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35777002

Recent experimental studies sparked the involvement of autophagy-related 7 (ATG7) in the development of atherosclerosis. However, the genetic variants and their association with coronary artery disease (CAD) are still to be unveiled. Therefore, we aimed to design a retrospective case-control study for the analysis of ATG7 gene polymorphisms and their association with CAD among the subjects originating from Pakistan. The ATG7 noncoding polymorphisms (rs1375206; Chr3:11297643 C/G and rs550744886; Chr3:11272004 C/G) were examined in 600 subjects, including 300 individuals diagnosed with CAD. Arginase-1 (ARG1) and nitric oxide metabolites were measured by the colorimetric enzymatic assay. Genotyping of noncoding ATG7 polymorphisms was accomplished by the polymerase chain reaction-restriction fragment length polymorphism method. A significant association of ATG7 (rs1375206 and rs550744886) was observed in individuals exhibiting CAD (P < .0001, for each single-nucleotide polymorphism). Moreover, variant allele G at both loci showed high occurrence and significant association with the disease phenotype as compared to the wild-type allele (odds ratio [OR] = 2.03, P < .0001 and OR = 2.08, P < .001, respectively). Variant genotypes at ATG7 rs1375206 and rs550744886 showed significant association with high concentrations of ARG1 and low nitric oxide metabolites among the patients (P < .0001 for each). A significant difference was noted in the distribution of the haplotype G-G, mapped at Chr3:11297643-11272004 between cases and controls (P < .0001). The study concludes that ATG7 polymorphisms are among the risk factors for CAD in the subjects from Pakistan. The study thus highlights the novel risk factors for high incidents of the disease and reported for the first time to the best of our knowledge.


Autophagy-Related Protein 7 , Coronary Artery Disease , Polymorphism, Single Nucleotide , Autophagy , Autophagy-Related Protein 7/genetics , Case-Control Studies , Coronary Artery Disease/genetics , Humans , Nitric Oxide , Retrospective Studies
8.
Sci Rep ; 12(1): 5732, 2022 04 06.
Article En | MEDLINE | ID: mdl-35388062

Salmonella enterica serovar Typhimurium is a foodborne pathogen causing occasional outbreaks of enteric infections in humans. Salmonella has one of the largest pools of temperate phages in its genome that possess evolutionary significance for pathogen. In this study, we characterized a novel temperate phage Salmonella phage BIS20 (BIS20) with unique tail fiber genes. It belongs to the subfamily Peduovirinae genus Eganvirus and infects Salmonella Typhimurium strain (SE-BS17; Acc. NO MZ503545) of poultry origin. Phage BIS20 was viable only at biological pH and temperature ranges (pH7 and 37 °C). Despite being temperate BIS20 significantly slowed down the growth of host strain for 24 h as compared to control (P < 0.009). Phage BIS20 features 29,477-base pair (bp) linear DNA genome with 53% GC content and encodes for 37 putative ORFs. These ORFs have mosaic arrangement as indicated by its ORF similarity to various phages and prophages in NCBI. Genome analysis indicates its similarity to Salmonella enterica serovar Senftenberg prophage (SEStP) sequence (Nucleotide similarity 87.7%) and Escherichia virus 186 (~ 82.4% nucleotide similarity). Capsid genes were conserved however those associated with tail fiber formation and assembly were unique to all members of genus Eganvirus. We found strong evidence of recombination hotspot in tail fiber gene. Our study identifies BIS20 as a new species of genus Eganvirus temperate phages as its maximum nucleotide similarity is 82.4% with any phage in NCBI. Our findings may contribute to understanding of origin of new temperate phages.


Bacteriophages , Salmonella Phages , Bacteriophages/genetics , Genome, Viral , Humans , Myoviridae/genetics , Nucleotides , Prophages/genetics , Salmonella , Salmonella Phages/genetics , Salmonella typhimurium/genetics
9.
J Tissue Eng Regen Med ; 16(5): 460-471, 2022 05.
Article En | MEDLINE | ID: mdl-35246945

This research on a thyroxine/heparin-based cotton wound dressing tests angiogenic and wound healing ability of thyroxine/heparin in a chick chorionic allantoic membrane bioassay and in skin wounds in healthy rats. Commercially available cotton dressings were simply loaded with thyroxine/heparin solutions and coated with wax. Prior to undertaking the animal study, we assessed in vitro release of thyroxine/heparin from coated and uncoated cotton dressings. Both showed more than 85% release of drug over 14 days, though the lesser release was observed in wax-coated thyroxine/heparin dressing as compared to uncoated thyroxine/heparin dressing. Testing of angiogenesis through CAM assay proved good angiogenic potential of heparin and thyroxin, but the thyroxine found more angiogenic than heparin. In animal study, full-thickness skin wounds of 20 mm diameter showed good healing in both heparin and thyroxine-treated groups. But the most striking result was seen in the thyroxine-treated group where thyroxine showed significant difference with heparin-treated group and completely healed the wounds in 23 days. Thus, the study suggest that thyroxine possesses greater angiogenic and wound healing potential than heparin, and the use of thyroxine/heparin-loaded wax-coated cotton dressing could be a cost-effective option for the management of chronic wounds.


Heparin , Thyroxine , Animals , Bandages , Heparin/pharmacology , Rats , Thyroxine/pharmacology , Wound Healing
10.
Mol Biol Rep ; 49(3): 2059-2071, 2022 Mar.
Article En | MEDLINE | ID: mdl-34993726

BACKGROUND: Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors affecting its world-wide growth and productivity. Among plant specific transcription factors, the association of HD-ZIPs with sesame drought responses at early seedling stage is not well-established yet and is very important to develop our molecular understanding on sesame drought tolerance. METHODS AND RESULTS: In this study, total 61 sesame HD-ZIP proteins were identified, based on their protein sequence homology with Arabidopsis and protein domain(s) architecture prediction, followed by their phylogenetic, conserved domain(s) motifs and gene structure analyses to classify them into four classes (HD-ZIP Class I-IV). HD-ZIP Class I was also subdivided into four subgroups: α (SiHZ25, SiHZ43, SiHZ9 and SiHZ16), ß1 (SiHZ10, SiHZ30, SiHZ32 and SiHZ26), ß2 (SiHZ42 and SiHZ45) and γ (SiHZ17, SiHZ7 and SiHZ35) by a comparative phylogenetic analysis of sesame with Arabidopsis and maize. Afterwards, twenty-one days old sesame seedlings were exposed to drought stress by withholding water for 7 days (when soil moisture content reduced to ~16%) and gene expression of HD-ZIP Class I (13 members) was performed in well- watered (control) and drought stressed seedlings. The gene expression analysis showed that the expressions of SiHZ7 (6.8 fold) and SiHZ35 (2.6 fold) from γ subgroup were significantly high in drought seedlings. CONCLUSIONS: This study is useful in demonstrating the role of SiHD-ZIP Class I in sesame drought responses at early seedling stage and to develop its novel drought tolerant varieties.


Sesamum , Dehydration/genetics , Dehydration/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genome, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/metabolism , Sesamum/genetics , Sesamum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Andrologia ; 54(1): e14274, 2022 Feb.
Article En | MEDLINE | ID: mdl-34664305

Mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) are post-translational modifiers that regulate energy production, body homeostasis and mitochondrial activities via different substrates in response to environmental stressors. The present study aimed at assessing the expression of SIRT3, SIRT4, and SIRT5 in the semen of infertile men. Expression analysis was performed using q-RT PCR. All mitochondrial sirtuin genes were significantly down-regulated in the semen of infertile men compared to fertile men. Mitochondrial sirtuin genes expression levels were correlated with mitochondrial HSP90 expression. HSP90 expression was positively correlated with SIRT3, SIRT4 and SIRT5 expression in the semen of fertile men, while a negative correlation was observed between HSP90 in the semen of infertile men and mitochondrial sirtuin genes in the semen of fertile men. These data suggest that dysregulation of mitochondrial sirtuin genes causes mitochondrial dysfunction due to stress, which appears to be associated with human male infertility by compromising functional and structural sperm integrity.


Infertility, Male , Mitochondrial Proteins , Sirtuins , Humans , Infertility, Male/genetics , Male , Mitochondria/genetics , Mitochondrial Proteins/genetics , Sirtuin 3 , Sirtuins/genetics
12.
Article En | MEDLINE | ID: mdl-33557243

Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERß) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.


Endocrine Disruptors , Androgens/toxicity , Endocrine Disruptors/toxicity , Estrogens/toxicity , Female , Male , Receptors, Androgen , Receptors, Estrogen
13.
Environ Res ; 195: 110832, 2021 04.
Article En | MEDLINE | ID: mdl-33549619

Male infertility is a major problem with important socioeconomic consequences. It is associated with several pathological factors, including but not limited to endocrine disruption as a result of environmental pollution and the alarming decline in sperm count over the decades is indicative of involvement of many environmental and lifestyle changes around the globe. Organochlorine pollutants such as dichlorodiphenyltrichlorethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) disrupt male reproductive system but the exact effect of environmental exposure on semen parameters in human is still not clear. This study was designed to monitor PCBs, DDTs and HCB in hair, urine and serum samples of infertile and healthy fertile men. Solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) was used to monitor analytes. All tested compounds were detected, indicating recent use/persistent accumulation. Hair samples revealed no significant association with serum/urine concentrations of the analytes, while serum/urine concentrations were significantly correlated positively. Concentrations were higher in serum compared to other samples. The levels of organochlorine pollutants were higher in infertile men compared to controls with few exceptions. Among PCBs, and DDTs, PCB-153 and pp'-DDT were detected in highest concentrations, respectively. op'-DDT and pp'-DDT levels were significantly higher in infertile men compared to controls. HCB was significantly correlated negatively with sperm motility in all samples. Serum concentrations of all compounds were higher in men with defective semen parameters compared to normospermics. Serum was the best biological sample for assessing health outcomes in relation to exposure levels.


Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , DDT/analysis , Environmental Pollutants/analysis , Humans , Hydrocarbons, Chlorinated/analysis , Male , Pakistan , Polychlorinated Biphenyls/analysis , Semen/chemistry , Sperm Motility
14.
Sci Rep ; 11(1): 59, 2021 01 08.
Article En | MEDLINE | ID: mdl-33420158

Fusarium verticillioides is an important fungal pathogen of maize, causing stalk rot and severely affecting crop production. The aim of this study was to characterize the protective effects of formulations based on Jacaranda mimosifolia leaf extracts against F. verticillioides in maize. We compared different seed treatments comprising J. mimosifolia extracts, chemical fungicide (mefenoxam) and salicylic acid to modulate the defense system of maize host plants. Both aqueous and methanolic leaf extracts of J. mimosifolia (1.2% w/v) resulted in 96-97% inhibition of mycelial growth of F. verticillioides. While a full-dose (1.2%) extract of J. mimosifolia provided significant protective effects on maize plants compared to the inoculated control, a half-dose (0.6% w/v) application of J. mimosifolia in combination with half-strength mefenoxam was the most effective treatment in reducing stalk rot disease in pot and field experiments. The same seed treatment significantly upregulated the expression of genes in the leaves encoding chitinase, glucanase, lipid transfer protein, and pathogenesis-related proteins PR-1, PR-5 and PR-10, 72 h after inoculation. This treatment also induced the activities of peroxidase, polyphenol oxidase, protease, acid invertase, chitinase and phenylalanine ammonia lyase. We conclude that seed pre-treatment with J. mimosifolia extract with half-strength chemical mefenoxam is a promising approach for the management of stalk rot in maize.


Bignoniaceae , Disease Resistance/drug effects , Fusarium , Plant Diseases/prevention & control , Plant Extracts/therapeutic use , Seeds/drug effects , Zea mays/microbiology , Bignoniaceae/chemistry , Catechol Oxidase/metabolism , Chitinases/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Induction/drug effects , Peptide Hydrolases/metabolism , Peroxidase/metabolism , Plant Diseases/microbiology , Plant Leaves/chemistry , Seeds/microbiology , Zea mays/drug effects , Zea mays/enzymology
15.
Gene ; 737: 144479, 2020 May 05.
Article En | MEDLINE | ID: mdl-32068124

BACKGROUND: Cardiac and renal dysfunction are often co-morbid pathologies leading to worsening prognosis resulting in difficulty in therapy of left ventricular hypertrophy (LVH). The aim of the current study was to determine the changes in expression of human ortholog genes of hypertension, vascular and cardiac remodeling and hypertensive nephropathy phenotypes under normal, disease and upon treatment with gasotransmitter including H2S (hydrogen sulphide), NO (nitric oxide) and combined (H2S + NO). METHODS: A total of 72 Wistar Kyoto rats (with equivalent male and female animals) were recruited in the present study where LVH rat models were treated with H2S and NO individually as well as with both combined. Cardiac and renal physical indices were recorded and relative gene expression were quantified. RESULTS: Both cardiac and renal physical indices were significantly modified with individual as well as combined H2S + NO treatment in control and LVH rats. Expression analysis revealed, hypertension, vascular remodeling genes ACE, TNFα and IGF1, mRNAs to be significantly higher (P ≤ 0.05) in the myocardia and renal tissues of LVH rats, while individual and combined H2S + NO treatment resulted in lowering the gene expression to normal/near to normal levels. The cardiac remodeling genes MYH7, TGFß, SMAD4 and BRG1 expression were significantly up-regulated (P ≤ 0.05) in the myocardia of LVH where the combined H2S + NO treatment resulted in normal/near to normal expression more effectively as compared to individual treatments. In addition individual as well as combined H2S and NO treatment significantly decreased PKD1 expression in renal tissue, which was up-regulated in LVH rats (P ≤ 0.05). CONCLUSIONS: The reduction in hemodynamic parameters and cardiac indices as well as alteration in gene expression on treatment of LVH rat model indicates important therapeutic potential of combined treatment with H2S + NO gasotransmitters in hypertension and cardiac hypertrophy when present as co-morbidity with renal complications.


Gene Expression/drug effects , Hydrogen Sulfide/pharmacology , Hypertension, Renal/genetics , Hypertension/genetics , Hypertrophy, Left Ventricular/genetics , Nephritis/genetics , Nitric Oxide/pharmacology , Vascular Remodeling/genetics , Ventricular Remodeling/genetics , Animals , Disease Progression , Female , Humans , Hydrogen Sulfide/blood , Male , Nitric Oxide/blood , Rats , Rats, Inbred WKY , TRPP Cation Channels/genetics
16.
Sci Total Environ ; 712: 136471, 2020 Apr 10.
Article En | MEDLINE | ID: mdl-31927446

The pursuit of industrialization and urbanization in developing countries disrupt the fragile environment, resulting in biogeochemical extra-emission of the trace elements into human inhabitance causing serious health concerns. We aimed to determine the associations between Autism spectrum disorder (ASD) risk and exposure to trace elements (As, Zn, Ni, Pb, Hg, Cu, Cd, and Co), associations between the internal doses and environmental sources of these elements were also assessed. Genetic susceptibility to toxins was assessed through GSTT1 and GSTM1 null polymorphism analysis. Our results showed that lower BMI in children was significantly associated with ASD (p < 0.05, AOR = 0.86; 95% CI: 0.76, 0.98). As was significantly higher in both hair (p < 0.01, AOR = 18.29; 95% CI: 1.98, 169) and urine (p < 0.01, AOR = 1.04; 95% CI: 1.01, 1.06) samples from children with ASD; urinary Hg (p < 0.05, AOR = 2.90; 95% CI: 1.39, 6.07) and Pb (p < 0.05, AOR = 1.95; 95% CI: 1.01, 3.77) were also positively associated with ASD. Regarding the genetic susceptibility, Cu was significantly associated with GSTM1 positive genotype (p < 0.05, AOR = 1.05; 95% CI: 1.00, 1.10). Children inhabiting the urban areas exposed to significantly higher levels of studied trace elements. The Estimated Daily Intake (EDI) values highlighted that the different land use settings resulted in children's source specific exposure to studied trace elements. The exposure pathway analysis showed that the distal factors of land-use settings associated with children increased exposure risk for most of the investigated elements, noticeably As, Pb and Hg associated with ASD prevalence.


Autistic Disorder , Environmental Exposure , Child , Environmental Monitoring , Humans , Metals, Heavy , Pakistan , Trace Elements
17.
Oncol Lett ; 18(1): 219-226, 2019 Jul.
Article En | MEDLINE | ID: mdl-31289491

Caveolae-mediated endocytosis regulates cell adhesion and growth in an anchorage-dependent manner. Studies of the endocytic function of caveolae have suggested a wide-ranging list of cargoes, including a number of receptors and extracellular proteins, ligands and nutrients from the extracellular matrix. Disruption of the processes of caveolae-mediated endocytosis mediated by signaling proteins is critical to cellular integrity. Caveolin-1 and dynamin-2 are the 2 major proteins associated with endocytotic function. Mechanistically, dynamin-2 has a co-equal role with caveolin-1 in terms of caveolae-derived endosome formation. Recent studies have revealed the pathological outcomes associated with the dysregulation of caveolin-1 and dynamin-2 expression. Increased expression levels of the gene for caveolin, Cav-1, resulting in augmented cellular metastasis and invasion, have been demonstrated in various types of cancer, and overexpression of the gene for dynamin-2, DNM2, has been associated with tumorigenesis in cervical, pancreatic and lung cancer. An increased expression of Cav-1 and DNM2 is known to be associated with the invasive behavior of cancer cells, and with cancer progression. Furthermore, it has been previously demonstrated that, in caveolar assembly and caveolae mediated endocytosis, Cav-1 interacts directly with DNM2 during the processes. Altered expression of the 2 genes is critical for the normal function of the cell. The expression patterns of Cav-1 and DNM2 have been previously examined in bladder cancer cell lines, and were each demonstrated to be overexpressed. In the present study, the expression levels of these 2 genes in bladder cancer samples were quantified. The gene expression levels of Cav-1 and DNM2 were identified to be increased 8.88- and 8.62-fold, respectively, in tumors compared with the normal controls. Furthermore, high-grade tumors exhibited significantly increased expression levels of Cav-1 and DNM2 (both P<0.0001) compared with the low-grade tumors. In addition, compared with normal control samples, the expression of the 2 genes in tumor samples was observed to be highly significant (P<0.0001), with a marked positive correlation identified for the tumors (Pearson's correlation coefficient, r=0.80 for the tumor samples vs. r=0.32 in the normal control samples). Taken together, the results of the present study demonstrated that the overexpression of Cav-1 and DNM2 genes, and a determination of their correlation coefficients, may be a potential risk factor for bladder cancer, in addition to other clinical factors.

18.
PLoS One ; 14(4): e0200968, 2019.
Article En | MEDLINE | ID: mdl-31039163

Adenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease. The aim of this study was to determine the potential role of ADARs in congenital heart disease. Strong downregulation of ADAR2 and increase in ADAR1 expression was observed in blood samples from congenital heart disease (CHD) patients. The decrease in expression of ADAR2 was in line with its downregulation in ventricular tissues of dilated cardiomyopathy patients. To further decipher the plausible regulatory pathway of ADAR2 with respect to heart physiology, miRNA profiling of ADAR2 was performed on tissues from ADAR2-/- mouse hearts. Downregulation of miRNAs (miR-29b, miR-405, and miR-19) associated with cardiomyopathy and cardiac fibrosis was observed. Moreover, the upregulation of miR-29b targets COL1A2 and IGF1, indicated that ADAR2 might be involved in cardiac myopathy. The ADAR2 target vascular development associated protein-coding gene filamin B (FLNB) was selected. The editing levels of FLNB were dramatically reduced in ADAR2-/- mice; however, no observable changes in FLNB expression were noted in ADAR2-/- mice compared to wild-type mice. This study proposes that sufficient ADAR2 enzyme activity might play a vital role in preventing cardiovascular defects.


Adenosine Deaminase/biosynthesis , Gene Expression Regulation, Enzymologic , Heart Defects, Congenital/blood , RNA, Messenger/blood , RNA-Binding Proteins/biosynthesis , Adenosine Deaminase/genetics , Adolescent , Animals , Child , Child, Preschool , Collagen Type I/blood , Collagen Type I/genetics , Female , Filamins/blood , Filamins/genetics , Heart Defects, Congenital/genetics , Humans , Insulin-Like Growth Factor I/biosynthesis , Insulin-Like Growth Factor I/genetics , Male , Mice , Mice, Knockout , MicroRNAs/blood , MicroRNAs/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
19.
Genet Mol Biol ; 42(1): 40-47, 2019.
Article En | MEDLINE | ID: mdl-30672978

Gene expression is tightly regulated in time and space through a multitude of factors consisting of signaling molecules. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNARE) are membrane proteins responsible for the intercellular trafficking of signals through endocytosis and exocytosis of vesicles. Altered expression of SNARE proteins in cellular communication is the major hallmark of cancer phenotypes as indicated in recent studies. SNAREs play an important role in maintaining cell growth and epithelial membrane permeability of the bladder and are not only involved in cancer progression but also metastatic cell invasion through SNARE-mediated trafficking. Synaptobrevin2/Vesicle associated membrane protein-2 (v-SNARE) and Syntaxin (t-SNARE) form a vesicular docking complex during endocytosis. Some earlier studies have shown a critical role of SNARE in colon, lungs, and breast cancer progression and metastasis. In this study, we analyzed the relative expression of the STX1A and VAMP2 (SYB2) for their possible association in the progression and metastasis of bladder cancer. The profiling of the genes showed a significant increase in STX1A and VAMP2 expression (p < 0.001) in high-grade tumor cells compared to normal and low-grade tumors. These findings suggest that elevated expression of STX1A and VAMP2 might have caused the abnormal progression and invasion of cancer cells leading to the transformation of cells into high-grade tumor in bladder cancer.

20.
Environ Monit Assess ; 191(2): 51, 2019 Jan 05.
Article En | MEDLINE | ID: mdl-30612331

The Indus River, the lifeline of Pakistan's economy and its tributaries, derives most of water flow from the upper Indus basin comprised of Karakorum, Himalaya, and Hindu Kush mountain ranges, thus making this area important in climate change studies. We analyzed the records of climatic variables including temperature, precipitation, and relative humidity (RH) from two weather stations (Gilgit and Skardu) of upper Indus basin region from 1953 to 2006. To observe the trends of climate change, the selected time was divided into two temporal half periods consisting of 27 years each (1953-1979 and 1980-2006). The overall mean temperature (OMT) was decreased by - 0.137 °C in Gilgit, while an increase of 0.63 °C was observed in Skardu during the later period compared to the previous one. The mean minimum temperature (MMT) was found to decrease while mean maximum temperature (MXT) showed non-significant changes during the summer at both locations. However, there was an evidence of spring and winter warming at both locations due to increase in the MXT. The precipitation data showed large interannual variation at both locations. Significant increases in the morning relative humidity (RH) were observed during summer and autumn months at Skardu and throughout the year at Gilgit, while the evening RH increased during the same seasons at both stations. Significant increase in MXT and OMT during spring and winter months at higher elevation (Skardu) may have serious implications for the deposition and melting of seasonal snowpack with impacts on local livelihoods and river flow.


Climate Change , Environmental Monitoring , Pakistan , Rivers , Seasons , Temperature , Water Supply
...