Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cogn Neurodyn ; 17(4): 909-920, 2023 Aug.
Article En | MEDLINE | ID: mdl-37522037

Major Depressive Disorder (MDD) is a high prevalence disease that needs an effective and timely treatment to prevent its progress and additional costs. Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment option for MDD patients which uses strong magnetic pulses to stimulate specific regions of the brain. However, some patients do not respond to this treatment which causes the waste of multiple weeks as treatment time and clinical resources. Therefore developing an effective way for the prediction of response to the rTMS treatment of depression is necessary. In this work, we proposed a hybrid model created by pre-trained Convolutional Neural Networks (CNN) models and Bidirectional Long Short-Term Memory (BLSTM) cells to predict response to rTMS treatment from raw EEG signal. Three pre-trained CNN models named VGG16, InceptionResNetV2, and EffecientNetB0 were utilized as Transfer Learning (TL) models to construct hybrid TL-BLSTM models. Then an ensemble of these models was created using weighted majority voting which the weights were optimized by Differential Evolution (DE) optimization algorithm. Evaluation of these models shows the superior performance of the ensemble model by the accuracy of 98.51%, sensitivity of 98.64%, specificity of 98.36%, F1-score of 98.6%, and AUC of 98.5%. Therefore, the ensemble of the proposed hybrid convolutional recurrent networks can efficiently predict the treatment outcome of rTMS using raw EEG data.

2.
Sci Rep ; 13(1): 10147, 2023 06 22.
Article En | MEDLINE | ID: mdl-37349335

Prediction of response to Repetitive Transcranial Magnetic Stimulation (rTMS) can build a very effective treatment platform that helps Major Depressive Disorder (MDD) patients to receive timely treatment. We proposed a deep learning model powered up by state-of-the-art methods to classify responders (R) and non-responders (NR) to rTMS treatment. Pre-treatment Electro-Encephalogram (EEG) signal of public TDBRAIN dataset and 46 proprietary MDD subjects were utilized to create time-frequency representations using Continuous Wavelet Transform (CWT) to be fed into the two powerful pre-trained Convolutional Neural Networks (CNN) named VGG16 and EfficientNetB0. Equipping these Transfer Learning (TL) models with Bidirectional Long Short-Term Memory (BLSTM) and attention mechanism for the extraction of most discriminative spatiotemporal features from input images, can lead to superior performance in the prediction of rTMS treatment outcome. Five brain regions named Frontal, Central, Parietal, Temporal, and occipital were assessed and the highest evaluated performance in 46 proprietary MDD subjects was acquired for the Frontal region using the TL-LSTM-Attention model based on EfficientNetB0 with accuracy, sensitivity, specificity, and Area Under the Curve (AUC) of 97.1%, 97.3%, 97.0%, and 0.96 respectively. Additionally, to test the generalizability of the proposed models, these TL-BLSTM-Attention models were evaluated on a public dataset called TDBRAIN and the highest accuracy of 82.3%, the sensitivity of 80.2%, the specificity of 81.9% and the AUC of 0.83 were obtained. Therefore, advanced deep learning methods using a time-frequency representation of EEG signals from the frontal brain region and the convolutional recurrent neural networks equipped with the attention mechanism can construct an accurate platform for the prediction of response to the rTMS treatment.


Depressive Disorder, Major , Humans , Depressive Disorder, Major/therapy , Transcranial Magnetic Stimulation/methods , Neural Networks, Computer , Brain , Treatment Outcome
3.
Int J Neural Syst ; 33(2): 2350007, 2023 Feb.
Article En | MEDLINE | ID: mdl-36641543

Repetitive Transcranial Magnetic Stimulation (rTMS) is proposed as an effective treatment for major depressive disorder (MDD). However, because of the suboptimal treatment outcome of rTMS, the prediction of response to this technique is a crucial task. We developed a deep learning (DL) model to classify responders (R) and non-responders (NR). With this aim, we assessed the pre-treatment EEG signal of 34 MDD patients and extracted effective connectivity (EC) among all electrodes in four frequency bands of EEG signal. Two-dimensional EC maps are put together to create a rich connectivity image and a sequence of these images is fed to the DL model. Then, the DL framework was constructed based on transfer learning (TL) models which are pre-trained convolutional neural networks (CNN) named VGG16, Xception, and EfficientNetB0. Then, long short-term memory (LSTM) cells are equipped with an attention mechanism added on top of TL models to fully exploit the spatiotemporal information of EEG signal. Using leave-one subject out cross validation (LOSO CV), Xception-BLSTM-Attention acquired the highest performance with 98.86% of accuracy and 97.73% of specificity. Fusion of these models as an ensemble model based on optimized majority voting gained 99.32% accuracy and 98.34% of specificity. Therefore, the ensemble of TL-LSTM-Attention models can predict accurately the treatment outcome.


Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Transcranial Magnetic Stimulation/methods , Electroencephalography/methods , Neural Networks, Computer , Memory, Long-Term
4.
Comput Biol Med ; 146: 105570, 2022 07.
Article En | MEDLINE | ID: mdl-35504218

Detection of mental disorders such as schizophrenia (SZ) through investigating brain activities recorded via Electroencephalogram (EEG) signals is a promising field in neuroscience. This study presents a hybrid brain effective connectivity and deep learning framework for SZ detection on multichannel EEG signals. First, the effective connectivity matrix is measured based on the Transfer Entropy (TE) method that estimates directed causalities in terms of brain information flow from 19 EEG channels for each subject. Then, TE effective connectivity elements were represented by colors and formed a 19 × 19 connectivity image which, simultaneously, represents the time and spatial information of EEG signals. Created images are used to be fed into the five pre-trained Convolutional Neural Networks (CNN) models named VGG-16, ResNet50V2, InceptionV3, EfficientNetB0, and DenseNet121 as Transfer Learning (TL) models. Finally, deep features from these TL models equipped with the Long Short-Term Memory (LSTM) model for the extraction of most discriminative spatiotemporal features are used to classify 14 SZ patients from 14 healthy controls. Results show that the hybrid framework of pre-trained CNN-LSTM models achieved higher accuracy than pre-trained CNN models. The highest average accuracy and F1-score were achieved using the EfficientNetB0-LSTM model through the 10-fold cross-validation method equal to 99.90% and 99.93%, respectively. Therefore, the superior performance of the hybrid framework of brain effective connectivity images from EEG signals and pre-trained CNN-LSTM models show that the proposed method is highly capable of detecting SZ patients from healthy controls.


Deep Learning , Schizophrenia , Brain/diagnostic imaging , Electroencephalography/methods , Humans , Neural Networks, Computer , Schizophrenia/diagnostic imaging
...