Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
J Labelled Comp Radiopharm ; 67(5): 168-179, 2024 May 15.
Article En | MEDLINE | ID: mdl-38485465

Breast cancer is the most common diagnosed cancer, and the second cause of cancer death among women, worldwide. HER2 overexpression occurred in approximately 15% to 20% of breast cancers. Invasive biopsy method has been used for detection of HER2 overexpression. HER2-targeted imaging via an appropriate radionuclide is a promising method for sensitive and accurate identification of HER2+ primary and metastatic lesions. 99mTc-anti-HER2 scFv can specifically target malignancies and be used for diagnosis of the cancer type and metastasis as well as treatment of breast cancer. We radiolabeled anti-HER2 scFv that was expressed in Escherichia coli and purified through Ni-NTA resin under native condition with 99mTc-tricarbonyl formed from boranocarbonate. HER2-based ELISA, BCA, TLC, and HPLC were used in this study. In the current study, anti-HER2 scFv was lyophilized before radiolabeling. It was found that freeze-drying did not change the binding activity of anti-HER2 scFv to HER2. Results demonstrated direct anti-HER2 scFv radiolabeling by 99mTc-tricarbonyl to hexahistidine sequence (His-tag) without any changes in biological activity and radiochemical purity of around 98%. Stability analysis revealed that 99mTc-anti-HER2 scFv is stable for at least 24 h in PBS buffer, normal saline, human plasma proteins, and histidine solution.


Isotope Labeling , Organotechnetium Compounds , Receptor, ErbB-2 , Single-Chain Antibodies , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Humans , Single-Chain Antibodies/chemistry , Organotechnetium Compounds/chemistry , Drug Stability , Technetium/chemistry , Radiopharmaceuticals/chemistry
2.
Iran J Pharm Res ; 23(1): e146470, 2024.
Article En | MEDLINE | ID: mdl-38464333

[This corrects the article e124228 in vol. 21.].

3.
Cancer Biother Radiopharm ; 38(7): 486-496, 2023 Sep.
Article En | MEDLINE | ID: mdl-37578479

Background: The Glu-Urea-Lys (EUK) pharmacophore as prostate-specific membrane antigen (PSMA)-targeted ligand was synthesized, radiolabeled with 99mTc-tricarbonyl-imidazole-BPS chelation system, and biological activities were evaluated. The strategy [2 + 1] ligand is applied for tricarbonyl labeling. (5-imidazole-1-yl)pentanoic acid as a monodentate ligand and bathophenanthroline disulfonate (BPS) as a bidentate ligand formed a chelate system with 99mTc-tricarbonyl. EUK-pentanoic acid-imidazole and EUK were evaluated for PSMA active site using AutoDock 4 software. Materials and Methods: EUK-pentanoic acid-imidazole was synthesized in two steps. BPS was radiolabeled with 99mTc-tricarbonyl at 100°C for 30 min. The purified 99mTc(CO)3(H2O)BPS was used to radiolabel EUK-pentanoic acid-imidazole at 100°C, 30 min. Radiochemical purity, Log P, and stability studies were carried out within 24 h. Affinity of 99mTc(CO)3BPS-imidazole-EUK was performed in the saturation binding studies using LNCaP cells at 37°C for 1 h with a range of 0.001-1000 nM radiolabeled compound range. Internalization studies were performed in LNCaP cells with 1000 nM radiolabeled compound incubated for (0-2) h at 37°C. Biodistribution was studied in normal male Balb/c mice. The artificial intelligence predicts the uptake of radiolabeled compound in tumor. Results: The structures of synthesized compounds were confirmed by mass spectroscopy. Radiochemical purity, Log P, and protein binding were ≥95%, -0.2%, and 23%, respectively. The radiolabeled compound was stable in saline and human plasma within 24 h with radiochemical purity ≥90%. There was no release of 99mTc within 4 h in competition with histidine. The affinity was 82 ± 26.38 nM, and the activity increased inside the cells over time. Biodistribution studies showed radioactivity accumulation in kidneys less than 99mTc-HYNIC-PSMA. There was a moderate accumulation of radioactivity in the liver and intestine. Conclusion: Based on the results, 99mTc(CO)3BPS-imidazole-EUK can potentially be used as an imaging agent for studies at prostate bed and distal areas. The chelate system can be potentially labeled with rhenium for imaging studies (fluorescent or scintigraphy) and therapy.


Antigens, Surface , Glutamate Carboxypeptidase II , Animals , Humans , Male , Mice , Artificial Intelligence , Chelating Agents/chemistry , Imidazoles , Ligands , Prostate , Radiopharmaceuticals , Technetium/chemistry , Tissue Distribution , Urea/chemistry , Urea/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors
4.
EXCLI J ; 22: 250-262, 2023.
Article En | MEDLINE | ID: mdl-36998711

Agonists of Benzodiazepine (BZD) receptor are exhaustively used in the control of muscle spasms, seizure, anxiety, and insomnia. BZDs have some unwanted effects; therefore, the development of new BZD receptor agonists with better efficacy and fewer unwanted effects is one of the subjects of interest. In this study, based on the pharmacophore/receptor model of the BZD binding site of GABAA receptors, a series of new 2-substituted-5-(4-chloro-2-phenoxy)phenyl-1,3,4-oxadiazole derivatives (6a-f) were designed. Energy minima conformers of the designed compounds and diazepam were well matched in conformational analysis and showed proper interaction with the BZD-binding site of the GABAA receptor model (α1ß2ϒ2) in docking studies. The designed compounds were synthesized in acceptable yield and evaluated for their in vitro affinity to the benzodiazepine receptor of rat brains by radioligand receptor binding assay. The results demonstrated that the affinities of most of the novel compounds were even higher than diazepam. The novel compound 6a with the best affinity in radioligand receptor binding assay (Ki=0.44 nM and IC50= 0.73±0.17 nM) had considerable hypnotic activity and weak anticonvulsant and anxiolytic effects with no negative effect on memory in animal models. Flumazenil as a selective benzodiazepine receptor antagonist was able to prevent hypnotic and anticonvulsant effects of 6a indicating the role of BZD receptors in these effects.

5.
Int J Pharm ; 624: 121990, 2022 Aug 25.
Article En | MEDLINE | ID: mdl-35809829

Tumorectomy followed by radiotherapy, hormone, and chemotherapy, are the current mainstays for breast cancer treatment. However, these strategies have systemic toxicities and limited treatment outcomes. Hence, there is a crucial need for a novel controlled release delivery system for implantation following tumor resection to effectively prevent recurrence. Here, we fabricated polycaprolactone (PCL)-based electrospun nanofibers containing piperine (PIP), known for chemopreventive and anticancer activities, and also evaluated the impact of collagen (Coll) incorporation into the matrices. In addition to physicochemical characterization such as morphology, hydrophilicity, drug content, release properties, and mechanical behaviors, fabricated nanofibers were investigated in terms of cytotoxicity and involved mechanisms in MCF-7 and 4T1 breast tumor cell lines. In vivo antitumor study was performed in 4T1 tumor-bearing mice. PIP-PCL75-Coll25 nanofiber was chosen as the optimum formulation due to sustained PIP release, good mechanical performance, and superior cytotoxicity. Demonstrating no organ toxicity, animal studies confirmed the superiority of locally administered PIP-PCL75-Coll25 nanofiber in terms of inhibition of growth tumor, induction of apoptosis, and reduction of cell proliferation compared to PIP suspension, blank nanofiber, and the control. Taken together, we concluded that PIP-loaded nanofibers can be introduced as a promising treatment for implantation upon breast tumorectomy.


Alkaloids , Nanofibers , Neoplasms , Alkaloids/pharmacology , Animals , Benzodioxoles/pharmacology , Collagen/chemistry , Mice , Nanofibers/chemistry , Piperidines , Polyesters/chemistry , Polyunsaturated Alkamides/pharmacology
6.
Protein Expr Purif ; 190: 106004, 2022 02.
Article En | MEDLINE | ID: mdl-34688918

Host cell proteins (HCPs) are process-related impurities that have influence on product safety and efficacy. HCPs should effectively be removed by chromatographic steps in downstream purification process. In this study, we aimed to evaluate the efficacy of immobilized-metal affinity chromatography (IMAC) for separation of HCPs from anti-HER2 single chain fragment variable (scFv) expressed in E. coli. This study explored how different purification conditions including native, denaturing and hybrid affect HCP level in purified anti-HER2 scFv. Furthermore, the effects of NaCl concentration in wash buffer as well as imidazole concentration in wash and elution buffer on purification yield and HCP level in purified anti-HER2 scFv were evaluated. It was found that increasing imidazole concentration in wash and elution buffers in native conditions reduced the yield of anti-HER2 scFv purification. However, enhancing NaCl concentration in wash buffer in purification under native conditions led to significant increase in the amount of anti-HER2 scFv without any change in protein purity. Herein, none of the IMAC purification methods conducted on soluble cytoplasmic proteins under native conditions could reduce the amount of HCP to acceptable level. HCP content was only lowered to ˂ 10 ppm when inclusion bodies were purified under hybrid conditions. Furthermore, increasing imidazole concentration in wash buffer in purification under hybrid conditions led to significant increase in eluted anti-HER2 scFv concentration, while HCP content was also increased in this condition. Overall, purification under hybrid conditions using wash buffer containing 40 mM imidazole resulted in the highest yield and acceptable level of HCP.


Chromatography, Affinity , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Gene Expression , Receptor, ErbB-2 , Single-Chain Antibodies/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Humans , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
7.
Iran J Pharm Res ; 21(1): e134190, 2022 Dec.
Article En | MEDLINE | ID: mdl-36896322

Background: Despite the advantages of direct intratumoral (IT) injection, the relatively rapid withdrawal of most anti-cancer drugs from the tumor due to their small molecular size limits the effectiveness of this method of administration. To address these limitations, recently, increasing attention has been directed to using slow-release biodegradable delivery systems for IT injection. Objectives: This study aimed to develop and characterize a doxorubicin-loaded DepoFoam system as an efficient controlled-release carrier to be employed for locoregional drug delivery in cancer treatment. Methods: Major formulation parameters, including the molar ratio of cholesterol to the main lipid [Chol/egg phosphatidylcholine (EPC)], triolein (TO) content, and lipid-to-drug molar ratio (L/D), were optimized using a two-level factorial design approach. The prepared batches were evaluated for encapsulation efficiency (EE) and percentage of drug release (DR) after 6 and 72 hours as dependent variables. The optimum formulation (named DepoDOX) was further evaluated in terms of particle size, morphology, zeta potential, stability, Fourier-transform infrared spectroscopy, in vitro cytotoxicity, and hemolysis. Results: The analysis of factorial design indicated that TO content and L/D ratio had a negative effect on EE; between these two, TO content had the greatest effect. The TO content was also the most significant component, with a negative effect on the release rate. The ratio of Chol/EPC showed a dual effect on the DR rate. Using a higher percentage of Chol slowed down the initial release phase of the drug; nevertheless, it accelerated the DR rate in the later slow phase. DepoDOX were spherical and honeycomb-like structures (≈ 9.81 µm) with a desired sustained release profile, as DR lasted 11 days. Its biocompatibility was confirmed by the results of cytotoxicity and hemolysis assays. Conclusions: The in vitro characterization of optimized DepoFoam formulation demonstrated its suitability for direct locoregional delivery. DepoDOX, as a biocompatible lipid-based formulation, showed appropriate particle size, high capability for encapsulating doxorubicin, superior physical stability, and a markedly prolonged DR rate. Therefore, this formulation could be considered a promising candidate for locoregional drug delivery in cancer treatment.

8.
Iran J Pharm Res ; 21(1): e127041, 2022 Dec.
Article En | MEDLINE | ID: mdl-36710987

Breast cancer is an invasive disease with a high prevalence among females. Despite various treatments, studies are still ongoing to find an effective treatment for this disease. This study aimed to synthesize a new series of diaryl benzo[d]imidazo[2,1-b]thiazole compounds containing aminoethoxy side chain and in vitro investigate their cytotoxicity on a human breast cancer cell line (MCF-7). Twelve derivatives (6a-6l) were synthesized from this scaffold, the structures of which were spectroscopically confirmed. The cytotoxic effects of the derivatives on the MCF-7 cell line were also assessed using the MTT assay. All these compounds showed a good inhibitory effect on the MCF-7 cell line, compared to that of tamoxifen. Compounds (6i) and (6j) showed higher cytotoxicity with relevant inhibitory effects of 81% and 73%, respectively.

9.
Heliyon ; 7(4): e06914, 2021 Apr.
Article En | MEDLINE | ID: mdl-33997421

Metal-organic frameworks (MOFs) are a fascinating class of crystalline porous materials composed of metal ions and organic ligands. Due to their attractive properties, MOFs can potentially offer biomedical field applications, such as drug delivery and imaging. This study aimed to systematically identify the affecting factors on the MOF characteristics and their effects on structural and biological characteristics. An electronic search was performed in four databases containing PubMed, Scopus, Web of Science, and Embase, using the relevant keywords. After analyzing the studies, 20 eligible studies were included in this review. As a result, various factors such as additives and organic ligand can influence the size and structure of MOFs. Additives are materials that can compete with ligand and may affect the nucleation and growth processes and, consequently, particle size. The nature and structure of ligand are influential in determining the size and structure of MOF. Moreover, synthesis parameters like the reaction time and initial reagents ratio are critical factors that should be optimized to regulate the size and structure. Of note is that the nature of the ligand and using a suitable additive can control the porosity of MOF. The more extended ligands aid in forming large pores. The choice of metallic nodes and organic ligand, and the MOF concentration are important factors since they can determine toxicity and biocompatibility of the final structure. The physicochemical properties of MOFs, such as hydrophobicity, affect the toxicity of nanoparticles. An increase in hydrophobicity causes increased toxicity of MOF. The biodegradability of MOF, as another property, depends on the organic ligand and metal ion and environmental conditions like pH. Photocleavable ligands can be served for controlled degradation of MOFs. Generally, by optimizing these affecting factors, MOFs with desirable properties will be obtained for biomedical applications.

10.
Pharmacol Rep ; 73(5): 1390-1395, 2021 Oct.
Article En | MEDLINE | ID: mdl-33871815

BACKGROUND: Opioid analgesics are prescribed for the moderate to severe pain in the clinic. New analogs of µ-opioid receptors are introduced because they may have less adverse effects and better efficacy. However, these new analogs have to be screened for their receptor affinity before entering clinical trial phases. A common method to do such screening is using radioligand-binding-assay, which is a fast and precise screening technique if the assays are done at an optimum condition. One of the main challenges in this type of screening is to separate free/unbound radioligands from bound radioligands. In this study, we applied a centrifugation method instead of a filtration method to separate free radioligands from bound radioligands, and also optimized the conditions for radioligand receptor binding studies of µ-opioid receptors, saturation, and the competition. METHODS: We used the midbrain and brainstem of naltrexone-treated rats as a source of µ-opioid receptors, and [3H]-DAMGO as the radioligand. Naloxone was also used to determine non-specific binding. A given amount of membrane protein was incubated with an increasing amount of radioligand at 37 °C to saturate the receptors at equilibrium and the amount of radioligand saturated in the receptors were used in competition studies. RESULTS: 160 µg membrane protein saturated with 20 nM [3H]-DAMGO at 37 °C for 35 min with Kd (15.06 nM, 95% CI 8.117-22.00) and Bmax (0.4750 pmol/mg, 95% CI 0.3839-0.5660). CONCLUSION: Applying the centrifugation method instead of the filtration to separate free from bound radioligand produced repeatable and reliable results. The optimum conditions for radioligand binding were used in competition studies which resulted in the expected outcomes.


Analgesics, Opioid/pharmacology , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Receptors, Opioid/agonists , Tritium , Animals , Codeine , Gene Expression Regulation/drug effects , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Opioid/metabolism
11.
Bioorg Chem ; 109: 104737, 2021 04.
Article En | MEDLINE | ID: mdl-33631464

Benzodiazepines (BZDs) have been widely used in neurological disorders such as insomnia, anxiety, and epilepsy. The use of classical BZDs, e.g., diazepam, has been limited due to adverse effects such as interaction with alcohol, ataxia, amnesia, psychological and physical dependence, and tolerance. In the quest for new benzodiazepine agonists with more selectivity and low adverse effects, novel derivatives of 4,6-diphenylpyrimidin-2-ol were designed, synthesized, and evaluated. In this series, compound 2, 4-(2-(benzyloxy)phenyl)-6-(4-fluorophenyl)pyrimidin-2-ol, was the most potent analogue in radioligand binding assay with an IC50 value of 19 nM compared to zolpidem (IC50 = 48 nM), a nonbenzodiazepine central BZD receptor (CBR) agonist. Some compounds with a variety of affinities in radioligand receptor binding assay were selected for in vivo evaluations. Compound 3 (IC50 = 25 nM), which possessed chlorine instead of fluorine in position 4 of the phenyl ring, exhibited an excellent ED50 value in most in vivo tests. Proper sedative-hypnotic effects, potent anticonvulsant activity, appropriate antianxiety effect, and no memory impairment probably served compound 3, a desirable candidate as a benzodiazepine agonist. The pharmacological effects of compound 3 were antagonized by flumazenil, a selective BZD receptor antagonist, confirming the BZD receptors' involvement in the biological effects of the novel ligand.


Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , GABA-A Receptor Agonists/pharmacology , Pyrimidines/pharmacology , Receptors, GABA-A/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anxiety/metabolism , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/chemical synthesis , GABA-A Receptor Agonists/chemistry , Ligands , Male , Mice , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
12.
Iran J Pharm Res ; 20(4): 47-58, 2021.
Article En | MEDLINE | ID: mdl-35194427

Benzodiazepines (BZD) are among the main classes of tranquilizing drugs, bearing much less toxicity compared to other drugs acting on the CNS. Considering the pharmacophore model of BZD binding to GABA-A receptor, novel diphenyl 1,3,4-oxadiazole compounds as BZD ligands were designed. The compounds were synthesized and structurally confirmed using LCMS, IR and NMR techniques. We investigated the affinity of the compounds to BZD receptors using radioligand [3H]-flumazenil by in-vitro studies. In addition, sedative-hypnotic, anxiety, anticonvulsant, muscle relaxant, memory impairment, and motor coordination activities of the synthesized compounds were evaluated using in-vivo studies. Based on in-vitro studies, compounds 7i and 7j were the most potent with IC50 values of 1.54 and 1.66 nM respectively. In-vivo studies showed that compound 7i has the highest impact on increased sedation, muscle relaxation, and decreased anxiety and these observations were antagonized by flumazenil. Compounds 7e and 7i were the most potent anticonvulsant agents among synthesized compounds in both MES and PTZ induced seizure tests. All synthesized compounds significantly decreased latency to fall in the Rotarod test but none of them had a significant impact on the memory impairment test.

13.
Iran J Pharm Res ; 20(4): 229-237, 2021.
Article En | MEDLINE | ID: mdl-35194442

Cancers in terms of morbidity and mortality are one of the major universal issues. New compounds of anticancer agents based on ß-aryl-ß-mercapto ketones scaffold possessing piperidinylethoxy or morpholinylethoxy groups were synthesized and evaluated as cytotoxic agents. Cytotoxic effects of synthesized compounds were measured against MCF-7, human ER-positive breast cancer cell lines, using MTT assay. The results indicated that all compounds had high cytotoxic activity on MCF-7 cancerous cells, even more than the reference drug Tamoxifen. Among them, compounds 3-(4-(2-morpholinoethoxy)phenyl)-1-phenyl-3-(phenylthio)propan-1-one (4a) and 1-(4-methoxyphenyl)-3-(3-(2-morpholinoethoxy)phenyl)-3-(phenylthio)propan-1-one (4h) had no significant cytotoxic effects on normal cells compared to Tamoxifen. Our results also indicated that adding tertiary amine basic side chain, found in Tamoxifen drug, to 1,3-diphenyl-3-(phenylthio)propan-1-ones improves the cytotoxic effects of these compounds on breast cancer cells.

14.
Bioorg Chem ; 106: 104504, 2021 01.
Article En | MEDLINE | ID: mdl-33279247

A new series of 5-(2-aryloxy-4-nitrophenyl)-4H-1,2,4-triazoles and 5-(2-aryloxy-3-pyridyl)-4H-1,2,4-triazoles, possessing C-3 thio or alkylthio substituents, was synthesized and evaluated for their benzodiazepine receptor affinity and anti-seizure activity. These analogues revealed similar to significantly superior affinity to GABAA/benzodiazepine receptor complex (IC50 values of 0.04-4.1 nM), relative to diazepam as the reference drug (IC50 value of 2.4 nM). To determine the onset of anti-seizure activity, the time-dependent effectiveness of i.p. administration of compounds on pentylenetetrazole induced seizure threshold was studied and a very good relationship was observed between the lipophilicity (cLogP) and onset of action of studied analogues (r2 = 0.964). The minimum effective dose of the compounds, determined at the time the analogues showed their highest activity, was demonstrated to be 0.025-0.1 mg/kg, relative to diazepam (0.025 mg/kg).


Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , Receptors, GABA-A/chemistry , Seizures/drug therapy , Triazoles/pharmacology , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Binding, Competitive/drug effects , Dose-Response Relationship, Drug , Hydrophobic and Hydrophilic Interactions , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
15.
Molecules ; 25(19)2020 Oct 08.
Article En | MEDLINE | ID: mdl-33049999

Targeting of cholecystokinin-2 receptor (CCK2R) expressing tumors using radiolabeled minigastrin (MG) analogs is hampered by rapid digestion of the linear peptide in vivo. In this study, a new MG analog stabilized against enzymatic degradation was investigated in preclinical studies to characterize the metabolites formed in vivo. The new MG analog DOTA-DGlu-Pro-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2 comprising site-specific amino acid substitutions in position 2, 6 and 8 and different possible metabolites thereof were synthesized. The receptor interaction of the peptide and selected metabolites was evaluated in a CCK2R-expressing cell line. The enzymatic stability of the 177Lu-labeled peptide analog was evaluated in vitro in different media as well as in BALB/c mice up to 1 h after injection and the metabolites were identified based on radio-HPLC analysis. The new radiopeptide showed a highly increased stability in vivo with >56% intact radiopeptide in the blood of BALB/c mice 1 h after injection. High CCK2R affinity and cell uptake was confirmed only for the intact peptide, whereas enzymatic cleavage within the receptor specific C-terminal amino acid sequence resulted in complete loss of affinity and cell uptake. A favorable biodistribution profile was observed in BALB/c mice with low background activity, preferential renal excretion and prolonged uptake in CCK2R-expressing tissues. The novel stabilized MG analog shows high potential for diagnostic and therapeutic use. The radiometabolites characterized give new insights into the enzymatic degradation in vivo.


Lutetium/metabolism , Peptides/metabolism , Radioisotopes/metabolism , Receptor, Cholecystokinin B/metabolism , Amino Acid Sequence , Amino Acid Substitution/physiology , Animals , Cell Line, Tumor , Female , Gastrins/metabolism , Humans , Mice , Mice, Inbred BALB C , Tissue Distribution/physiology
16.
Arch Pharm (Weinheim) ; 353(12): e2000066, 2020 Dec.
Article En | MEDLINE | ID: mdl-32852850

In this study, a number of 2,5-disubstituted 1,3,4-thiadiazoles were synthesized using an appropriate synthetic route, and their anticonvulsant activity was determined by the maximal electroshock seizure (MES) test and their neurotoxicity was evaluated by the rotarod test. Additionally, their hypnotic activity was tested using the pentobarbital-induced sleep test. Compounds 7 (ED50 = 1.14 and 2.72 µmol/kg in the MES and sleep tests, respectively) and 11 (ED50 = 0.65 and 2.70 µmol/kg in the MES and sleep tests, respectively) were the most potent ones in the sleep test and anticonvulsant test, showing a comparable activity with diazepam as the reference drug. The results of in vivo studies, especially the antagonistic effects of flumazenil, and also the radioligand-binding assay confirmed the involvement of benzodiazepine (BZD) receptors in the anticonvulsant and hypnotic activity of compounds 7 and 11. Finally, the docking study of compound 11 in the BZD-binding site of the GABAA (gamma-aminobutyric acid) receptor confirmed the possible binding of the compound to the BZD receptors. We concluded that the novel 1,3,4-thiadiazole derivatives with appropriate substitution at positions 2 and 5 of the heterocyclic ring had a good affinity to BZD receptors and showed significant efficacy in the pharmacological tests.


Anticonvulsants/pharmacology , Hypnotics and Sedatives/pharmacology , Receptors, GABA-A/drug effects , Seizures/prevention & control , Sleep/drug effects , Thiadiazoles/pharmacology , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/metabolism , Anticonvulsants/toxicity , Binding Sites , Disease Models, Animal , Drug Design , Electric Stimulation , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/metabolism , Hypnotics and Sedatives/toxicity , Male , Mice , Molecular Docking Simulation , Molecular Structure , Motor Activity/drug effects , Protein Binding , Radioligand Assay , Receptors, GABA-A/metabolism , Rotarod Performance Test , Seizures/metabolism , Seizures/physiopathology , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/toxicity
17.
Acta Biomater ; 113: 42-62, 2020 09 01.
Article En | MEDLINE | ID: mdl-32622055

Exosomes are small nanoparticles secreted by almost all cells and have a well-known role in intercellular communication. They are found in different body fluids and can also be isolated from cell culture media. They contain a natural cargo including various protein and nucleic acid molecules originated from their donor cells. In recent years, exosomes have emerged as a desired drug delivery system. They are believed to provide a targeted delivery of drug molecules, supplemented with their natural function. Furthermore, they have a membranous structure similar to liposomes, and that motivated researchers to apply their previous experience of drug loading into liposomes for exosomes. Herein, we discuss applied methods for the encapsulation of different drugs into exosomes, parameters affecting the incorporation of drug molecules into exosomes, characterization techniques, recent achievements, commercialization challenges and the potential future developments of exosomal drugs. Overall, while the application of exosomes as a drug delivery system is still in its infancy, they are considered to be a new class of natural nanocarriers with great potential for clinical application. Understanding of their key formulation parameters, pharmaceutical properties, in vivo behavior and applicable scale-up production will pave their way to the market. STATEMENT OF SIGNIFICANCE: Details of loading methods, characterization and biopharmaceutical properties of drug-incorporated exosomes are presented. Most parameters affecting encapsulation of drugs into exosomes are mentioned to serve as a guide for future studies in this field. Moreover, challenges on the way of exosomes to the market and clinic are described.


Drug Delivery Systems , Exosomes , Nanoparticles , Cell Communication , Liposomes
18.
Curr Med Chem ; 27(41): 7064-7089, 2020.
Article En | MEDLINE | ID: mdl-32532184

Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.


Apoptosis , Molecular Imaging , Peptides/chemistry , Radiopharmaceuticals/chemistry , Humans , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
19.
Bioorg Chem ; 99: 103743, 2020 06.
Article En | MEDLINE | ID: mdl-32217372

Early diagnosis of Prostate cancer (PCa) plays a vital role in successful treatment increasing the survival rate of patients. Prostate Specific Membrane Antigen (PSMA) is over-expressed in almost all types of PCa. The goal of present study is to introduce new 99mTc-labeled peptides as a PSMA inhibitor for specific detection of PCa at early stages. Based on published PSMA-targeting compounds, a set of peptides bearing the well-known Glu-Urea-Lys pharmacophore and new non-urea containing pharmacophore were designed and assessed by in silico docking studies. The selected peptides were synthesized and radiolabeled with 99mTc. The in-vitro tests (log P, stability in normal saline and fresh human plasma, and affinity toward PSMA-positive LNCaP cell line) and in-vivo characterizations of radiopeptides (biodistribution and Single Photon Emission Computed Tomography-Computed Tomography (SPECT-CT) imaging in normal and tumour-bearing mice) were performed. The peptides 1-3 containing Glu-Urea-Lys and Glu-GABA-Asp as pharmacophores were efficiently interacted with crystal structure of PSMA and showed the highest binding energies range from -8 to -11.2 kcal/mol. Regarding the saturation binding test, 99mTc-labeled peptide 1 had the highest binding affinity (Kd = 13.58 nM) to PSMA-positive cells. SPECT-CT imaging and biodistribution studies showed high kidneys and tumour uptake 1 h post-injection of radiopeptide 1 and 2 (%ID/g tumour = 3.62 ± 0.78 and 1.8 ± 0.32, respectively). 99mTc-peptide 1 (Glu-urea-Lys-Gly-Ala-Asp-Naphthylalanine-HYNIC-99mTc) exhibited the highest binding affinity, high radiochemical purity, the most stability and high specific accumulation in prostate tumour lesions. 99mTc-peptide 1 being of comparable efficacy and pharmacokinetic properties with the well-known PET tracer (68Ga-PSMA-11) seems to be applied as a promising SPECT imaging agent to early diagnose of PCa and consequently increase survival rate of patients.


Antigens, Surface/analysis , Drug Design , Glutamate Carboxypeptidase II/analysis , Peptides/chemistry , Prostatic Neoplasms/diagnostic imaging , Technetium/chemistry , Urea/chemistry , Dose-Response Relationship, Drug , Humans , Male , Models, Molecular , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , PC-3 Cells , Peptides/chemical synthesis , Single Photon Emission Computed Tomography Computed Tomography , Structure-Activity Relationship , Urea/analogs & derivatives
20.
Daru ; 28(1): 87-96, 2020 Jun.
Article En | MEDLINE | ID: mdl-31845157

BACKGROUND: Integrins are interesting targets in oncology. RGD sequence has high affinity for αVß3 integrin receptors. Diagnostic/therapeutic agents can be selectively delivered into cancer cells overexpressing αVß3 integrin by using RGD as a carrier. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown anticancer properties in in vitro and in vivo studies. The anti-cancer properties of NSAIDs occur though COX-2 inhibition. Regarding the anti-cancer properties of NSAIDs and overexpression of COX-2 enzyme in cancer cells, targeted delivery of NSAIDs into cancer cells to maximize their efficiency and minimize their side effects may gain increased clinical interest. OBJECTIVES: In this study, RGD was conjugated to ketoprofen/Naproxen to selectively transfer these non-selective COX inhibitors into cancer cells. METHODS: Keto/Nap-RGD-N4 peptides were synthesized based on solid phase fmoc peptide synthesis. Radiolabeling with [99mTc] via N4 (GGAG) ligand was done for biological evaluation. Affinity and specificity of Keto/Nap-RGD-N4 to integrin was determined using A2780, OVCAR-3, SKOV-3 and HT-1080 cell lines. Percentage of Intenalization was measured in A2780 cells. Biodistriburion was studied in normal and tumor model mice. RESULTS: Radiolabeled compounds showed high affinity to cells expressing αVß3 integrin in comparison to cells not expressing αVß3. The affinity to A2780 was significantly higher than OVCAR-3 cells. The %internalization into A2780 cells was quite low. Compounds showed more than 50% inhibition on A2780 and OVCAR-3 cells, less than 10% on MCF-7 and HT-1080 cells and no cytotoxicity on fibroblast cells after 48 h incubation. Although uptake of radiolabeled compounds in tumor was high at 1 h post-injection, the tumor/blood ratio was less than 1.5 which made SPECT imaging impossible. CONCLUSION: Provided that NSAID drugs are conjugated to RGD, there will be a selective delivery to target tissues as well as synergetic anti-tumor effects which reduce systemic doses and toxicity. Graphical abstract.


Anti-Inflammatory Agents, Non-Steroidal , Antineoplastic Agents , Drug Delivery Systems , Integrin alphaVbeta3/metabolism , Ketoprofen , Naproxen , Oligopeptides , Radiopharmaceuticals , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Humans , Ketoprofen/administration & dosage , Ketoprofen/chemistry , Mice, Inbred BALB C , Mice, Nude , Naproxen/administration & dosage , Naproxen/chemistry , Neoplasms/metabolism , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemistry , Technetium , Tissue Distribution
...