Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170310, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272081

RESUMEN

Global agricultural systems face one of the greatest sustainability challenges: meeting the growing demand for food without leaving a negative environmental footprint. United States (US) and China are the two largest economies and account for 39 % of total global greenhouse gases (GHG) emissions into the atmosphere. No-till is a promising land management option that allows agriculture to better adapt and mitigate climate change effects compared to traditional tillage. However, the efficacy of no-till for mitigating GHG is still debatable. In this meta-analysis, we comprehensively assess the impact of no-till (relative to traditional tillage) on GHG mitigation potential and crop productivity in different agroecological systems and management regimes in the US and China. Overall, no-till in China did not change crop yields, although soil CO2 (8 %) and N2O (12 %) emissions decreased significantly, while soil CH4 emissions increased by 12 %. In contrast to Chinese no-till, a significant improvement in crop yields (up to 12 %) was recorded on US cropland under no-till. Moreover, significant decreases in soil N2O (21 %) and CH4 (12 %) emissions were observed. Of the three cropping systems, only wheat showed significant reduction in CO2, N2O and CH4 emissions in the Chinese no-till system. In the case of US, no-till soybean-rice and maize cropping systems demonstrated significant emission reductions for N2O and CO2, respectively. Interestingly, yields of no-till maize in China and rice in US exceeded those of other no-till cereals. In China, no-till on medium-texture soils resulted in significant reductions in GHG emissions and higher crop yields compared to other soil types. In both countries, the relatively higher crop yields under irrigated versus non-irrigated no-till and the significant yield differences on fine textured soils under US no-till are likely due to the substantial N2O reductions. In summary, crop yield disparities from no-till between China and the US were related to the insignificant effects on controlling CH4 emissions and successfully mitigating N2O, respectively. This study comprehensively demonstrates how cropping system and pedoclimatic conditions influence the relative effectiveness of no-till in both countries.


Asunto(s)
Gases , Gases de Efecto Invernadero , Estados Unidos , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Agricultura/métodos , Suelo , Grano Comestible/química , China , Metano/análisis
2.
Environ Sci Pollut Res Int ; 30(46): 103141-103152, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37682438

RESUMEN

Arsenic (As) is a naturally occurring element that is found in soil, water, and rocks. However, it can also be released into the environment through human activities. Arsenic is considered an environmental hazard because it is toxic to humans and animals and can cause serious health problems. Additionally, As-contaminated soil can limit plant growth and reduce crop yields, leading to economic losses for farmers. So, decreasing metal/metalloid solubility in soil by synthetic and organic amendments leads to better crop productivity on contaminated soils. The current study aimed to evaluate farmyard manure (FYM)-mediated changes in soil arsenic (As) behavior, and subsequent effects on achene yield of sunflower. Treatment plan comprised of two As levels, i.e., As-60 (60 mg kg-1) and As-120 (120 mg kg-1), four FYM levels (0, 20, 35, and 50 g kg-1), three textural types (sandy, loamy and clayey), and replicated thrice. Seven As fractions including water soluble-As (WS-As), labile-As (L-As), calcium-bound As (Ca-As), aluminum-bound As (Al-As), iron-bound As (Fe-As), organic-matter-bound As (OM-As), and residual-As (R-As) were determined which differed significantly (P ≤ 0.05) with FYM and soil texture. FYM supplementation decreased WS-As, L-As, Ca-As, and Al-As while increased Fe-As, OM-As, and R-As. The immobilizing effect of FYM increased with increasing its rate of application, and maximum effect was found in clayey soil. As speciation in soil also significantly (P ≤ 0.05) affected by FYM and soil texture, with a reduction in arsenate while increase in arsenite, mono-methyl arsenate, and di-methyl arsenate with increasing the rate of FYM supplementation. Bioaccumulation factor reduced with FYM addition, and highest reduction of 38.65 and 42.13% in sandy, 34.24 and 36.26% in loamy while 29.16 and 35.10% in clayey soils at As-60 and As-120, respectively, by 50 g kg-1 FYM compared with respective As treatments without FYM. As accumulation in plant parts was significantly (P ≤ 0.05) reduced by FYM with the subsequent improvement in achene yield.

3.
Environ Pollut ; 325: 121433, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907241

RESUMEN

Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/metabolismo , Biodegradación Ambiental , Metales Pesados/metabolismo , Plantas/metabolismo , Fotosíntesis , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
4.
Ecotoxicol Environ Saf ; 234: 113385, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278995

RESUMEN

In semi-arid regions, post-restoration vegetation recovery on abandoned agricultural lands often fails due to inherently low organic matter content and poor soil fertility conditions, including phosphorus (P). As such, amending these soils with controlled release P fertilizer, especially with suitable P solubilizing bacteria (PSB) may promote plant growth and productivity by stimulating biological P fertility. To this aim, a pot study was performed to evaluate the agronomic potential of maize and soil biological P pools, using encapsulated (ENRP) and non-encapsulated (NRP) nano-rock phosphate as the P fertilizer source, on reclaimed agricultural soil in the presence and absence of PSB inoculant. The experiment was setup following a 3 × 2 factorial arrangement with four replicates. Without PSB, NRP treatment showed marginal positive effects on plant growth, P nutrition and P use efficiency (PUE) compared to control treatment. Although larger gains with NRP treatment were more noticeable under PSB inoculation, ENRP was the most convenient slow-release P fertilizer, increasing plant growth, P nutrition and grain yield compared to all treatments. Importantly, PSB inoculation with ENRP resulted in significantly higher increase in soil CaCl2-P (8.91 mg P kg soil-1), citrate-P (26.98 mg P kg soil-1), enzyme-P (18.98 mg P kg soil-1), resin-P (11.41 mg P kg soil-1), and microbial-P (18.94 mg P kg soil-1), when compared to all treatment combinations. Although a decrease in soil HCl-P content was observed with both types of P fertilizer, significant differences were found only with PSB inoculation. A significant increase in soil biological P pools could be due to the higher specific area and crystalline structure of nano materials, providing increased number of active sites for PSB activity in the presence of biobased encapsulated shell. Furthermore, the increase in PSB abundance, higher root carboxylate secretions, and decreased rhizosphere pH in response to nano-structured P fertilizer, implies greater extension of rhizosphere promoting greater P mobilization and/or solubilization, particularly under PSB inoculated conditions. We conclude that cropping potential of abandoned agricultural lands can be enhanced by the use of nano-rock phosphate in combination with PSB inoculant, establishing a favorable micro-environment for higher plant growth and biochemical P fertility.

5.
Chemosphere ; 287(Pt 4): 132406, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34597649

RESUMEN

Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.


Asunto(s)
Arsénico , Helianthus , Contaminantes del Suelo , Arsénico/análisis , Arsénico/toxicidad , Fósforo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
6.
Sci Total Environ ; 805: 150337, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543788

RESUMEN

Globally, agriculture sector is the significant source of greenhouse gases (GHGs) emissions into the atmosphere. To achieve the goal of limiting or mitigating these emissions, a rigorous abatement strategy with an additional focus on improving crop productivity is now imperative. Replacing traditional agriculture with soil conservation-based farming can have numerous ecological benefits. However, most assessments only consider improvements in soil properties and crop productivity, and often preclude the quantitative impact analysis on GHGs emissions. Here, we conducted a meta-analysis to evaluate crop productivity (i.e., biomass, grain, total yield) and GHGs emissions (i.e., CO2, N2O, CH4) for three major soil conservation practices i.e., no-tillage, manures, and biochar. We also examined the yield potential of three major cereal crops (i.e., wheat, rice, maize) and their significance in mitigating GHGs emissions. None of the manures were able to reduce GHGs emissions, with poultry manure being the largest contributor to all GHGs emissions. However, pig-manure had the greatest impact on crop yield while emitting the least CO2 emissions. Use of biochar showed a strong coupling effect between reduction of GHGs (i.e., CH4 by -37%; N2O by -25%; CO2 by -5%) and the increase in crop productivity. In contrast, no-tillage resulted in higher GHGs emissions with only a marginal increase in grain yield. Depending on crop type, all cereal crops showed varied degrees of GHGs mitigation under biochar application, with wheat responding most strongly due to the additional yield increment. The addition of biochar significantly reduced CO2 and N2O emissions under both rainfed and irrigated conditions, although CH4 reductions were identical in both agroecosystems. Interestingly, the use of biochar resulted in a greater yield benefit in rainfed than in irrigated agriculture. Despite significant GHGs emissions, manure application contributed to higher crop yields, regardless of soil type or agroecosystem. Moreover, no-tillage showed a significant reduction in CH4 and N2O emissions under rainfed and irrigated conditions. Notably , biochar application in coarse while no-till in fine textured soils contributed to N2O mitigation. Most importantly, effectiveness of no-tillage as a countermeasure to GHGs emissions while providing yield benefits is inconsistent. Overall, the decision to use farm manures should be reconsidered due to higher GHGs emissions. We conclude that the use of biochar could be an ideal way to reduce GHGs emissions. However, further understanding of the underlying mechanisms and processes affecting GHGs emissions is needed to better understand the feedback effects in conservation agriculture.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Animales , Producción de Cultivos , Fertilizantes/análisis , Estiércol , Metano/análisis , Óxido Nitroso/análisis , Suelo , Porcinos
7.
Chemosphere ; 291(Pt 1): 132678, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34710460

RESUMEN

Soil salinity is one of the most pernicious environmental hazards affecting crop growth and productivity in arid and semi-arid climates. In saline soils, the crop plants encounter nutrients deficient conditions mainly due to antagonistic affinity of sodium (Na+) and chloride (Cl-). The accumulation of salts in the rhizosphere restricts plant growth, the severity of which depends on the source and concentration of the salt. Therefore, we hypothesized that sodium containing salts could have toxic effects on maize plants either in a single or in combined form. To evaluate the interactive effect of sodium salts on plant growth, ionic homeostasis, and seed quality attributes, a pot study was performed using maize as a test plant at the research area of the College of Agriculture, University of Sargodha. Selected salts including, NaCl, Na2SO4 and their combination (NaCl + Na2SO4), were applied in equal ratio for different salinity levels (7, 10, 13 and 16 dS m-1) and the untreated control. The results show that all the measured growth, yield, biochemical and quality attributes of maize were negatively affected with increasing concentration of all the salt sources; however, severity of these effects were more intense when NaCl was applied at all salinity levels. It is concluded that all salts (NaCl, Na2SO4 and NaCl + Na2SO4) had negative effects on biochemical, qualitative, growth and yield characteristics of maize plant. Most importantly, NaCl was found to be more harmful compared to Na2SO4 and mixtures of both salts due to the dominance of Na+ and Cl-ions. Among all salinity levels, the more detrimental effects of NaCl occurred at salinity level of 16 dS m-1.


Asunto(s)
Salinidad , Zea mays , Cloruros , Homeostasis , Humanos , Semillas
8.
Environ Sci Pollut Res Int ; 29(7): 10250-10262, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34519003

RESUMEN

Forest ecosystem carbon (C) storage primarily includes vegetation layers C storage, litter C storage, and soil C storage. The precise assessment of forest ecosystem C storage is a major concern that has drawn widespread attention in global climate change worldwide. This study explored the C storage of different layers of the forest ecosystem and the nutrient enrichment capacity of the vegetation layer to the soil in the Castanopsis eyeri natural forest ecosystem (CEF) present in the northeastern Hunan province, central China. The direct field measurements were used for the estimations. Results illustrate that trunk biomass distribution was 48.42% and 62.32% in younger and over-mature trees, respectively. The combined biomass of the understory shrub, herb, and litter layers was 10.46 t·hm-2, accounting for only 2.72% of the total forest biomass. On average, C content increased with the tree age increment. The C content of tree, shrub, and herb layers was 45.68%, 43.08%, and 35.76%, respectively. Litter C content was higher in the undecomposed litter (44.07 %). Soil C content continually decreased as the soil depth increased, and almost half of soil C was stored in the upper soil layer. Total C stored in CEF was 329.70 t·hm-2 and it follows the order: tree layer > soil layer > litter layer > shrub layer > herb layer, with C storage distribution of 51.07%, 47.80%, 0.78%, 0.25%, and 0.10%, respectively. Macronutrient enrichment capacity from vegetation layers to soil was highest in the herb layer and lowest in the tree layer, whereas no consistent patterns were observed for trace elements. This study will help understand the production mechanism and ecological process of the C. eyeri natural forest ecosystem and provide the basics for future research on climate mitigation, nutrient cycling, and energy exchange in developing and utilizing sub-tropical vegetation.


Asunto(s)
Ecosistema , Árboles , Biomasa , Carbono/análisis , Secuestro de Carbono , China , Bosques , Nutrientes , Suelo
9.
Environ Res ; 202: 111789, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34333013

RESUMEN

Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO2 (RR = -0.108) and CH4 (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in N2O (RR = -0.13) and CH4 (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO2 compared to N2O and CH4 emissions. We also found that a biochar application rate of 30 t ha-1 was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO2, N2O, and CH4 emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Carbón Orgánico , Suelo
10.
J Environ Manage ; 285: 112170, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33607561

RESUMEN

Organic amendments (animal manure and biochar) to agricultural soils may enhance soil organic carbon (SOC) contents, improve soil fertility and crop productivity but also contribute to global warming through nitrous oxide (N2O) emission. However, the effects of organic amendments on N2O emissions from agricultural soils seem variable among numerous research studies and remains uncertain. Here, eighty-five publications (peer-reviewed) were selected to perform a meta-analysis study. The results of this meta-analysis study show that the application of animal manure enhanced N2O emissions by 17.7%, whereas, biochar amendment significantly mitigated N2O emissions by 19.7%. Moreover, coarse textured soils increased [lnRR‾ = 182.6%, 95% confidence interval (CI) = 151.4%, 217.7%] N2O emission after animal manure, in contrast, N2O emission mitigated by 7.0% from coarse textured soils after biochar amendment. In addition, this study found that 121-320 kg N ha-1 and ⩽ 30 T ha-1 application rates of animal manure and biochar mitigated N2O emissions by 72.3% and 22.5%, respectively. Soil pH also played a vital role in regulating the N2O emissions after organic amendments. Furthermore, > 10 soil C: N ratios increased N2O emissions by 121.4% and 27.6% after animal and biochar amendments, respectively. Overall, animal manure C: N ratios significantly enhanced N2O emissions, while, biochar C: N ratio had not shown any effect on N2O emissions. Overall, average N2O emission factors (EFs) for animal manure and biochar amendments were 0.46% and -0.08%, respectively. Thus, the results of this meta-analysis study provide scientific evidence about how organic amendments such as animal manure and biochar regulating the N2O emission from agricultural soils.


Asunto(s)
Estiércol , Óxido Nitroso , Agricultura , Animales , Carbono , Carbón Orgánico , Fertilizantes , Óxido Nitroso/análisis , Suelo
11.
Sci Total Environ ; 750: 142299, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182198

RESUMEN

No-tillage (NT) practice is extensively adopted with aims to improve soil physical conditions, carbon (C) sequestration and to alleviate greenhouse gases (GHGs) emissions without compromising crop yield. However, the influences of NT on GHGs emissions and crop yields remains inconsistent. A global meta-analysis was performed by using fifty peer-reviewed publications to assess the effectiveness of soil physicochemical properties, nitrogen (N) fertilization, type and duration of crop, water management and climatic zones on GHGs emissions and crop yields under NT compared to conventional tillage (CT) practices. The outcome reveals that compared to CT, NT increased CO2, N2O, and CH4 emissions by 7.1, 12.0, and 20.8%, respectively. In contrast, NT caused up to 7.6% decline in global warming potential as compared to CT. However, absence of difference in crop yield was observed both under NT and CT practices. Increasing N fertilization rates under NT improved crop yield and GHGs emission up to 23 and 58%, respectively, compared to CT. Further, NT practices caused an increase of 16.1% CO2 and 14.7% N2O emission in the rainfed areas and up to 54.0% CH4 emission under irrigated areas as compared to CT practices. This meta-analysis study provides a scientific basis for evaluating the effects of NT on GHGs emissions and crop yields, and also provides basic information to mitigate the GHGs emissions that are associated with NT practice.

12.
Environ Sustain (Singap) ; 4(3): 527-531, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38624437

RESUMEN

The study aimed to investigate the correlation between meteorological parameters and the spread of the COVID-19 pandemic in Islamabad, Pakistan. The meteorological parameters include temperature minimum (°C), temperature maximum (°C), temperature average (°C), humidity minimum (%), humidity maximum (%), humidity average (%), and rainfall (mm). The data of COVID-19, such as the number of new confirmed cases and deaths was obtained from the Ministry of Health, Pakistan. The correlations of various types, i.e., Pearson, Spearman, and Kendall correlations between meteorological parameters and COVID-19, were employed for data analyses. The results exhibited a highly significant relationship between COVID-19 and temperature minimum and temperature average among all meteorological parameters. The study findings may help competitive authorities to combat this disease in Pakistan.

14.
Plant Physiol Biochem ; 156: 242-256, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32979797

RESUMEN

Salinity stress is one of the major environmental stresses that impose global socio-economic impacts, as well as hindering crop productivity. Halotolerant plant growth-promoting rhizobacteria (PGPR) having potential to cope with salinity stress can be employed to counter this issue in eco-friendly way. In the present investigation, halotolerant PGPR strains, AP6 and PB5, were isolated from saline soil and characterized for their biochemical, molecular and physiological traits. Sequencing of 16 S rRNA gene and comparative analysis confirmed the taxonomic affiliation of AP6 with Bacillus licheniformis and PB5 with Pseudomonas plecoglossicida. The study was carried out in pots with different levels of induced soil salinity viz. 0, 5, 10 and 15 dSm-1 to evaluate the potential of bacterial inoculants in counteracting salinity stress in sunflower at different plant growth stages (30, 45 and 60 days after sowing). Both the bacterial inoculants were capable of producing indole acetic acid and biofilm, solubilizing inorganic rock phosphate, and also expressed ACC deaminase activity. The PGPR inoculated plants showed significantly higher fresh and dry biomass, plant height, root length and yield plant-1. Ameliorative significance of applied bacterial inoculants was also evidenced by mitigating oxidative stress through upregulation of catalase (CAT), superoxide dismutase (SOD) and guaiacol peroxidase (GPX) antioxidant enzymes. Increase in photosynthetic pigments, gas exchange activities and nutrient uptake are crucial salt stress adaptations, which were enhanced with the inoculation of salt tolerant biofilm producing PGPR in sunflower plants. Although increase in salinity stress levels has gradually decreased the plant's output compared to non-salinized plants, the plants inoculated with PGPR confronted salinity stress in much better way than uninoculated plants. Owing to the wide action spectrum of these bacterial inoculants, it was concluded that these biofilm PGPR could serve as effective bioinoculants and salinity stress alleviator for sunflower (oil seed crop) by increasing crop productivity in marginalized agricultural systems.


Asunto(s)
Antioxidantes/metabolismo , Helianthus/microbiología , Helianthus/fisiología , Rhizobiaceae/fisiología , Tolerancia a la Sal , Biopelículas , Raíces de Plantas , Microbiología del Suelo
15.
J Environ Manage ; 271: 111033, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778313

RESUMEN

In semi-arid regions, soil phosphorus (P) dynamics in cereal-legume intercropping are not yet fully elucidated, particularly in relation to integrated application of fertilizers. To this aim, we investigate the effects of different fertilizers on various P fractions in relation to the rhizosphere-microbial processes in a cowpea/maize intercropping system. Field experiments were conducted during two consecutive years (2016-2017) in a split-plot design by establishing cowpea/maize alone or intercropped onto the main plot, while the sub-plot was treated with four types of fertilization, i.e. no fertilizer addition (control), organic amendment (compost), mineral fertilizers (NPK) and multi-nutrient enriched compost (NPKEC). Our results showed that NPKEC fertilizer increased NaHCO3-Pi by 69% in maize, 62% in cowpea and 93% in intercropped plots compared to control plots. Similarly, a significant increase in the NaHCO3-Po fraction was also recorded with NPKEC treatment in all cropping systems. In case of moderately labile P, NPKEC fertilizer caused the highest increase of NaOH-Po (12.87 ± 0.50 mg P kg-1 soil) and NaOH-Pi (22.29 ± 0.83 mg P kg-1 soil) fractions in intercropped plots. Except for intercropping, NPK application caused an increase in the non-available P fraction (HCl-Pi), while the use of NPKEC decreased the HCl-Pi concentration in all cropping systems, suggesting stronger merits both for intercropping and NPKEC. Surprisingly, maize exhibited substantially higher phosphatases activity compared to cowpea in monoculture amended with compost, implying distinct crop strategies for adaptation under low P conditions. Based on the multi-factor analysis, the close association of NaHCO3-P with P solubilizing bacteria, root carboxylates and pH indicated that rhizosphere processes are the strongest predictors of immediately available P. Since alkaline phosphatase (ALP) is a P-degrading enzyme of microbial origin, rhizosphere related ALP association may have originated from root-associated microflora promoting P mobilization. Furthermore, the strong association of microbial biomass P (MBP) and acid phosphates (ACP) with NaOH-P fraction indicated moderately available P cycle in soil was mainly driven by microbial-related processes. Factor analysis map and two-way ANOVA confirmed that fertilization regime had a stronger effect on all tested variables compared to cropping system. Altogether, our results suggest that a combination of microbial-rhizosphere processes controls the dynamics of P fertility in semi-arid soils. In the broader context of improving soil P fertility, it is highly recommended the use of environmentally sustainable sources of fertilizer, such as NPKEC, which can enhance the competitive performance of legume-cereal intercropping under semi-arid agroecosystems.


Asunto(s)
Rizosfera , Suelo , Agricultura , Fertilizantes , Fósforo , Zea mays
16.
Chemosphere ; 239: 124725, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31499300

RESUMEN

Use of wastewater is known to provide nutrients for crop plants, but its potential to improve phosphorus (P) availability in semi-arid regions is poorly understood. In this study, seasonal changes in soil P availability as well as associated phyiscochemical and biochemical indicators were investigated from the wastewater irrigated urban soils of Faisalabad, Pakistan. Soil sampling was carried out during summer and winter season from four wastewater irrigated sites of varied stream flow i.e. upstream wastewater (UWW), midstream wastewater (MWW), lowerstream wastewater (LWW) and downstream wastewater (DWW), and canal water irrigation (CWI) as a reference site. Across seasons, MWW site had significantly higher soil organic carbon (SOC), water extractable organic carbon (WEOC), microbial biomass carbon (MBC), microbial biomass phosphorus (MBP) as well as the availability of phosphorus i.e. NaHCO3-P and H2O-P compared to CWI site. In both sampling seasons, MWW site also recorded significantly higher soil enzyme activities compared to the rest of wastewater sites. Moreover, significantly higher total P and electrical conductivity (EC) of soil was noticed at DWW site across both summer and winter seasons. Biplot principle component analysis also indicated seasonally a stronger shift in soil total P and EC at DWW site. On the other hand, availability of P was closely related to soil active carbon pools at MWW site. However, buildup of soil salinity particularly at DWW site along with lower P availability and associated changes in other soil properties, call for careful assessment of wastewater use in these urban soils.


Asunto(s)
Riego Agrícola , Fósforo/análisis , Suelo/química , Aguas Residuales , Biomasa , Carbono/análisis , Ciudades , Pakistán , Fósforo/farmacocinética , Salinidad , Estaciones del Año , Microbiología del Suelo , Aguas Residuales/química
17.
Chemosphere ; 234: 70-80, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31203043

RESUMEN

Being a primary toxic heavy metal, lead (Pb) contamination presents an imposing environmental and public health concern worldwide. A Bacillus subtilis PbRB3, displaying higher Pb tolerance, was isolated from the textile effluent. The bacterial culture was able to remove >80% of Pb from culture solution. Upon screening in the presence of Pb, PbRB3 strain exhibited significant plant growth promoting potential. A 3 weeks long pot experiment was established to examine the capability of PbRB3 strain for physiological and biochemical traits, and Pb accumulation tendency of mung bean at 250 and 500 mg kg-1 of Pb toxicity, respectively. With respect to control treatments, photosynthetic pigments, protein synthesis, net assimilation rate, transpiration rate and stomatal conductance were significantly constrained by Pb toxicity levels. Intrinsic and instantaneous water use efficiencies were considerably improved in inoculated plants under Pb toxicity. Compared to inoculated control, significantly higher superoxide dismutase activity in both Pb toxicity treatments, while higher malondialdehyde contents only at Pb500 treatment was recorded with PbRB3 inoculation. Catalase activity between Pb250 and Pb500 treatments was comparable at both inoculation level. Moreover, PbRB3 inoculation led to significantly higher peroxidase activity under Pb toxicity treatments compared to inoculated control. The PbRB3 inoculation led to comparable differences in root Pb content between Pb250 and Pb500 treatments. These results suggest that inoculation of Pb tolerant, Bacillus subtilis PbRB3, could be employed to improve mung bean growth potential and adaptation against Pb toxicity, and thereby accelerated Pb rhizoaccumulation from metal contaminated environment.


Asunto(s)
Bacillus subtilis/fisiología , Plomo/toxicidad , Fotosíntesis , Vigna/efectos de los fármacos , Oxidación-Reducción , Vigna/crecimiento & desarrollo , Vigna/metabolismo
18.
Sci Total Environ ; 619-620: 517-527, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156271

RESUMEN

A field study was conducted to test the potential of 5-year consecutive application of fresh industrial sludge (FIS) and composted industrial sludge (CIS) to restore soil functions at surface (0-15cm) and subsurface (15-30cm) of the degraded agricultural land. Sludge amendments increased soil fertility parameters including total organic carbon (TOC), soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) at 0-15cm depth. Soil enzyme activities i.e. dehydrogenase (DHA), ß-glucosidase (BGA) and alkaline phosphatase (ALp) were significantly enhanced by FIS and CIS amendments in surface soil. However, urease activity (UA) and acid phosphatase (ACp) were significantly reduced compared to control soil. The results showed that sludge amendments significantly increased microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) at both soil depth, and soil microbial biomass carbon (MBC) only at 0-15cm depth. Significant changes were also observed in the population of soil culturable microflora (bacteria, fungi and actinomycetes) with CIS amendment in surface soil suggesting persistence of microbial activity owing to the addition of organic matter source. Sludge amendments significantly reduced soil heavy metal concentrations at 0-15cm depth, and the effect was more pronounced with CIS compared to unamended control soil. Sludge amendments generally had no significant impact on soil heavy metal concentrations in subsoil. Agronomic viability test involving maize was performed to evaluate phytotoxicity of soil solution extract at surface and sub-surface soil. Maize seeds grown in solution extract (0-15cm) from sludge treated soil showed a significant increase of relative seed germination (RSG), relative root growth (RRG) and germination index (GI). These results suggested that both sludge amendments significantly improved soil properties, however, the CIS amendment was relatively more effective in restoring soil functions and effectively immobilizing wastewater derived heavy metals compared to FIS treatment.

19.
Environ Sci Pollut Res Int ; 24(31): 24376-24386, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28891014

RESUMEN

Relations between phosphate and arsenate are important but inconsistent to influence arsenic (As) phytotoxicity depending on many plant and soil factors. Present research aimed to investigate the phosphate and arsenate interactions in sunflower (Helianthus annuus L.) grown in alkaline calcareous soil for 18 weeks under natural environmental conditions at three arsenate [0 (As0), 40 (As40), and 80 (As80) mg As kg-1 soil as sodium arsenate] and three phosphate [0 (P0), 100 (P100), and 200 (P200) mg P2O5 kg-1 soil as diammonium phosphate] levels. The plants were grown in pots according to completely randomized design with five replications. Ionic and physiological parameters were measured at 40 days after treatment completion. Arsenic contamination with As40 and As80 increased root and shoot As concentration with relatively higher concentration in roots, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) while decreased plant P, chlorophyll, protein, and glutathione (GSH), and consequently plant growth, yield, and yield attributes. Addition of P100 and P200 under As stress reduced As transfer from soil to roots to shoots, MDA concentration, SOD, CAT, and POD activities while increased GSH, leaf protein, chlorophyll, and growth characteristics as well as achene yield compared to As-treated plants without additional P. In conclusion, P-induced inhibition of As transfer from soil to roots to shoots and reduction in MDA concentration accompanied with an increase in the synthesis of protein, chlorophyll, and GSH could be the main mechanisms responsible for lowered As toxicity in sunflower, leading to mitigation of potential risks of As contamination to food chain and human health.


Asunto(s)
Antioxidantes/metabolismo , Arseniatos/metabolismo , Helianthus/metabolismo , Fosfatos/metabolismo , Contaminantes del Suelo/metabolismo , Helianthus/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Distribución Aleatoria
20.
Environ Sci Pollut Res Int ; 24(4): 3456-3469, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27873113

RESUMEN

Application of raw and treated wastewater for irrigation is an extensive practice for agricultural production in arid and semiarid regions. Raw textile wastewater has been used for cultivation in urban and peri-urban areas in Pakistan without any systematic consideration to soil quality. We conducted a laboratory incubation study to investigate the effects of low C/N ratio raw textile wastewater on soil nitrogen (N) contents, labile carbon (C) as water-soluble C (WSC) contents, and activities of urease and dehydrogenase enzymes. The 60-day incubation study used an alkaline clay loam aridisol that received 0 (distilled water), 25, 50, and 100% wastewater concentrations, and microcosms were incubated aerobically under room temperature at 70% water holding capacity. Results revealed that raw wastewater significantly (p < 0.05) changed soil N pools and processes, WSC contents, and enzymatic activities. The organic and inorganic N species increased with increasing wastewater concentrations, whereas WSC contents followed an opposite trend. The highest NH4+-N and NO3--N contents were observed in soil treated with 100% wastewater. The extractable organic N (EON) contents always represented >50% of the soil total Kjeldahl N (TKN) contents and served as the major N pool. However, nitrification index (NO3--N/NH4+-N ratio) decreased at high wastewater concentrations. A significant negative correlation was observed between EON and WSC (p < 0.05) and between net nitrification and WSC/EON ratio (p < 0.01). In contrast, nitrification index and WSC contents were correlated, positively suggesting WSC potentially controlling N turnover in nutrient-poor aridisol. We found significant (p < 0.0001) positive correlations of soil urease and dehydrogenase enzymatic activities with soil-extractable mineral N contents indicating coupled N cycling and soil biological activity. Higher production and accumulation of soil NO3--N and EON contents in concentrated wastewater-treated soil could pose an ecological concern for soil fertility, biological health, and water quality. However, the EON could lead to mineral N pool but only if sufficient labile C source was present. The effects of wastewater irrigation on soil N cycling need to be assessed before it is recommended for crop production.


Asunto(s)
Carbono/análisis , Nitrógeno/análisis , Suelo/química , Aguas Residuales/química , Álcalis/química , Carbono/metabolismo , Fenómenos Químicos , Nitrificación , Nitrógeno/metabolismo , Microbiología del Suelo , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA