Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411386

RESUMEN

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Asunto(s)
Tronco Encefálico , Leptina , Neuronas , Pérdida de Peso , Animales , Humanos , Masculino , Ratones , Tronco Encefálico/metabolismo , Leptina/metabolismo , Ratones Obesos , Neuronas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores de Orexina/metabolismo
3.
Nature ; 609(7928): 761-771, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071158

RESUMEN

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Asunto(s)
Tronco Encefálico , Conducta de Enfermedad , Neuronas , Animales , Anorexia/complicaciones , Área Postrema/citología , Área Postrema/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Conducta de Enfermedad/efectos de los fármacos , Letargia/complicaciones , Lipopolisacáridos/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/metabolismo
4.
Cell Rep ; 37(11): 110110, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910909

RESUMEN

Mechanisms driving the prolonged meiotic prophase I in mammals are poorly understood. RNA helicase YTHDC2 is critical for mitosis to meiosis transition. However, YTHDC2 is highly expressed in pachytene cells. Here we identify an essential role for YTHDC2 in meiotic progression. Specifically, YTHDC2 deficiency causes microtubule-dependent telomere clustering and apoptosis at the pachytene stage of prophase I. Depletion of YTHDC2 results in a massively dysregulated transcriptome in pachytene cells, with a tendency toward upregulation of genes normally expressed in mitotic germ cells and downregulation of meiotic transcripts. Dysregulation does not correlate with m6A status, and YTHDC2-bound mRNAs are enriched in genes upregulated in mutant germ cells, revealing that YTHDC2 primarily targets mRNAs for degradation. Furthermore, altered transcripts in mutant pachytene cells encode microtubule network proteins. Our results demonstrate that YTHDC2 regulates the pachytene stage by perpetuating a meiotic transcriptome and preventing microtubule network changes that could lead to telomere clustering.


Asunto(s)
Meiosis , Microtúbulos/fisiología , Fase Paquiteno , ARN Helicasas/fisiología , Espermatocitos/citología , Telómero , Transcriptoma , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...