Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642208

RESUMEN

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Asunto(s)
Cirrosis Hepática , Fenilpropionatos , Pirroles , Proteína smad3 , Factor de Crecimiento Transformador beta , Humanos , Línea Celular , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Fenilpropionatos/farmacología , Fosforilación/efectos de los fármacos , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
2.
Iran Biomed J ; 28(1): 31-7, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38468370

RESUMEN

Background: Liver fibrosis, associated with hepatic stellate cells (HSCs), occurs when a healthy liver sustains damage, thereby impairing its function. NADPH oxidases (NOXs), specifically isoforms 1, 2, and 4, play a role in reactive oxygen species (ROS) production during hepatic injuries, resulting in fibrosis. Curcumin has shown strong potential in mitigating liver fibrosis. Our research aimed to investigate the effects of curcumin on lowering NOX and ROS levels. This compound was also studied for its effects on NOXs, ROS concentrations through the inhibition of Smad3 phosphorylation in transforming growth factor beta (TGF-ß)-activated human HSCs. Methods: MTT assay investigated the cytotoxic effects of curcumin on HSCs. The cells were activated by exposure to TGF-ß (2 ng/mL) for 24 hours. After activating, the cells were treated with curcumin at 25-150 µM concentrations. After administering curcumin to the cells, we employed RT-PCR and Western blot techniques to evaluate the related gene and protein expression levels. This evaluation was primarily focused on the mRNA expression levels of NOX1, NOX2, NOX4 and phosphorylated Smad3C. Results: The mRNA expression level of aforesaid NOXs as well as α-smooth muscle actin (α-SMA), collagen1-α, and ROS levels were significantly reduced following 100 µM curcumin treatment. Furthermore, curcumin significantly decreased the p-Smad3C protein level in TGF-ß-activated cells, with fold changes of 3 and 2 observed at 75 and 100 µM, respectively. Conclusion: Curcumin decreased the levels of ROS and NOX, as well as the expression of α-SMA and collagen1-α. The primary mechanism for this reduction could be linked to the level of p-Smad3C. Hence, curcumin could serve as an effective therapeutic agent for liver fibrosis.


Asunto(s)
Curcumina , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Células Estrelladas Hepáticas/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Expresión Génica , ARN Mensajero/metabolismo
3.
Iran J Basic Med Sci ; 27(2): 241-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234671

RESUMEN

Objectives: Non-alcoholic fatty liver disease (NAFLD) is the most common liver-related metabolic disorder in the world, with a global prevalence of 25%. Compounds with anti-inflammatory, lipid-lowering, and insulin-sensitizing properties can be used for the prevention or treatment of NAFLD. Therefore, this study was conducted to investigate the effect of saroglitazar (a dual PPARα/γ agonist) and diosmin (a flavonoid) on non-alcoholic fatty liver induced by a high-fat diet (HFD) in Wistar rats. Materials and Methods: Forty male Wistar rats (6-8 weeks old) were fed an HFD to induce NAFLD. After 7 weeks, rats were divided into four groups: group1 was fed HFD, and the other groups received HFD+saroglitazar, HFD+diosmin, and HFD+ saroglitazar+diosmin. We examined body and liver weight, histopathology, serum levels of liver enzymes (ALT and AST), and lipid profiles (LDL-C and HDL-C) using the standard protocols. qRT-PCR was also used to examine the expression of PPARα, PPARγ, SREBP1c, FAS, ACC, CPT1α, and pro-inflammatory genes (IL6, TNFα, and TGFß). Results: Rats fed the HFD showed characteristics of NAFLD (pathologically and biochemically). Administration of saroglitazar and diosmin alone caused a significant decrease in the levels of PPARγ, SREBP1c, FAS, ACC, ALT, AST, LDL-C, and pro-inflammatory genes and a significant increase in PPARα, CPT1a, and HDL-C in comparison with the HF group (P<0.05). Their combined effect was more evident. Conclusion: Our results showed that diosmin, like saroglitazar, significantly ameliorated inflammatory and lipid profiles in HFD-induced NAFLD, suggesting that diosmin, as a natural compound, could be a suitable alternative to saroglitazar.

4.
Iran J Pharm Res ; 22(1): e134807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116551

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that currently lack effective treatment options. Objectives: This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on NAFLD treatment in an animal model. Methods: Male Wistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups: Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and body weight were measured, and the expression of genes involved in fatty acid biosynthesis, ß-oxidation, and inflammatory responses was assessed. Results: Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and lipid factors, including low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) values, better than treatment with both FENO and MSCs. ADSCs + LPS treatment significantly decreased transforming growth factor ß (TGF-ß) and genes associated with inflammatory responses. Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS. Conclusions: Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.

5.
Iran Biomed J ; 27(4): 199-204, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598299

RESUMEN

Background: Currently, liver fibrosis is growing worldwide; unfortunately, there is no definite cure for this disease. Hence, understanding the molecular pathways involved in the development of liver fibrosis can help to find a proper treatment. In this study, we aimed to evaluate the effects of isorhamnetin as an antifibrotic agent on platelet-derived growth factor (PDGF)-BB-activated hepatic stellate cells (HSC)-T6 cells in a concentration-dependent manner. We have also attempted to assess signaling pathways that may affect liver fibrosis. Methods: PDGF-BB was used to activate the HSC-T6 rat hepatic stellate cell line. The activated cells were treated with Isorhamnetin for 24 h. Finally, we compared the mRNA expression level of COLA1 and α-SMA and also the level of phosphorylated AKT protein with the control group. Results: The obtained data revealed a significant increase in the expression level of the COLA1 and α-SMA genes (p > 0.05), as well as phosphorylated AKT protein, in the cells treated with PDGF-BB. In addition, 75 and 100 µM concentrations of Isorhamnetin markedly declined the COLA1 and α-SMA expression and also the phosphorylated AKT protein level in the HSC-T6 cells. Conclusion: Our findings suggest that Isorhamnetin decreases HSC-T6 activation, the expression of COLA1 and α-SMA, in vitro, which could act as an antifibrotic element to reduce and treat liver fibrosis disease.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Becaplermina/farmacología , Cirrosis Hepática/tratamiento farmacológico , Transducción de Señal
6.
Iran J Basic Med Sci ; 26(6): 695-700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275763

RESUMEN

Objectives: Free cholesterol in the diet can cause liver fibrosis by accumulating in Hepatic stellate cells (HSCs). The rate of mortality of this disease is high worldwide and there is no definite remedy for it, but might be treated by anti-fibrotic therapies. MSCs-derived exosomes are known as the new mechanism of cell-to-cell communication, showing that exosomes can be used as a new treatment. In this study, we investigated the ability of exosomes of WJ-MSCs as a new remedy to reduce cholesterol-induced liver fibrosis in the LX2 cell line. Materials and Methods: MSCs were isolated from Wharton's jelly of the umbilical cord and the exosomes were extracted. The LX2 cell line was cultured in DMEM medium with 10% FBS, then cells were treated with 75 and 100 µM concentrations of cholesterol for 24 hr. The mRNA expression of TGF-ß, αSMA, and collagen1α genes, and the level of Smad3 protein were measured to assess liver fibrosis. Results: Cholesterol increased the expression of TGF-ß, αand -SMA, and collagen1α genes by increasing the phosphorylation of the Smad3 protein. Treatment with Exosomes significantly reduced the expression of TGF-ß, α-SMA, and collagen1α genes (fibrosis genes). Treatment with exosomes prevented the activation of HSCs by inhibiting the phosphorylation of the Smad3 protein. Conclusion: The exosomes of WJ-MSCs can inhibit the TGFß/Smad3 signaling pathway preventing further activation of HSCs and progression of liver fibrosis. So, the exosomes of WJ-MSCs s could be introduced as a treatment for liver failure.

7.
Iran J Basic Med Sci ; 25(12): 1498-1503, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36544529

RESUMEN

Objectives: Activated cells which are called star-shaped cells, are some of the key factors in the development of liver fibrosis. Activation of NADPH oxidase (NOX) is associated with increased HSCs activity and progression of hepatic fibrosis. In this study, the effects of human exosomes derived from WJ-MSCs on NOX1, NOX2, and NOX4 gene expression in TGF-ß-induced hepatic fibrosis were investigated. Materials and Methods: LX2 cell line was treated with 2 ng/ml TGF-ß for 24 hr, in order to induce liver fibrosis after starvation. In the next step, the cells were treated with several concentrations of the exosomes derived from WJ-MSCs (10, 20, 30, 40, and 50 µg/ml). Finally, Smad3C phosphorylated protein expression level and NOX1, NOX2, and NOX4 gene expression levels were measured. Results: The results demonstrated that the level of NOX1, NOX2, and NOX4 mRNA expressions decreased significantly during 24 hrs at concentrations of 40 and 50 µg/ml of WJ-MSCs exosomes in TGF-ß-induced-HSCs. The p-Smad3C proteins were significantly decreased (fold change: 1.83, P-value<0.05) after exposure to WJ-MSC-derived exosomes. Conclusion: Treatment with exosomes prevents further activation of HSCs by inhibiting the level of Smad3C phosphorylation. The experimental data of our study suggested that in liver fibrosis, the protection of HSCs activation against TGF-ß by inhibiting the NOX pathway via human exosomes of WJ-MSCs is extremely important. It needs further research as a treatment method.

8.
J Diabetes Metab Disord ; 21(2): 1531-1538, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36404864

RESUMEN

Background: In hepatic damage, Hepatic stellate cells (HSCs) become active, proliferate, and change to myofibroblasts. Increasing the fibrogenic genes, such as Transforming growth factor-ß (TGF-ß), Alpha Smooth Muscle Actin (α-SMA), and Collagen1 α (COL 1α) show that the activation of HSCs can lead to hepatic fibrosis. Purpose: These days people consume much cholesterol, palmitic acid, and glucose which can have adverse effects on an individuals' health, but their influences on activating human HSCs and inducing liver fibrosis have not been assessed. Our purpose is to investigate the effects of these three main and abundant ingredients in the diet on the activation of human HSCs and inducing liver fibrosis. Methods: To measure cholesterol, palmitic acid, and glucose cytotoxic effects on the viability of the cells, the MTT technique was used. Then the treated cells were incubated in media containing cholesterol, palmitic acid, and glucose with different concentrations for 24 h. At last, the α-SMA, COL 1α, and TGF-ß, genes mRNA expression were measured by real-time PCR. Results and Conclusions: Our results demonstrated that high concentrations of cholesterol and palmitic acid can activate human HSCs that lead to an increase in the mRNA expressions of fibrogenic genes. Thus, controlling fat intaking and knowing its mechanism is crucial to prevent and attenuate hepatic fibrosis.

9.
Mol Biol Rep ; 49(4): 2839-2845, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35067813

RESUMEN

BACKGROUND: Hepatic fibrosis is one of the main reasons for mortality in the world. Hepatic stellate cells (HSCs) activate during chronic liver injury, express more Transforming growth factor beta (TGF-ß), Collagen1α (COLA1) and actin-alpha smooth muscle (αSMA) that lead to hepatic fibrosis. Quercetin is a flavonoid in vegetables and fruits that has shown hepatoprotective potential, but little is known about its effects on HSCs activation. In this study, we investigated the antifibrotic activity of Quercetin on fructose-activated human HSCs and its underlying mechanism in vitro. METHODS: First, the human HSCs were treated with fructose (25 mM) for 48 h and then with Quercetin for 24 h. Total RNAs were extracted, reversely transcribed into cDNA, Quantitative Real-time PCR and western blot were performed. RESULTS: The results showed that the levels of mRNA expression of TGF-ß, αSMA, Collagen1 genes, and phosphorylated smad3 protein were significantly reduced in fructose-activated HSCs after treatment with Quercetin compared to fructose-activated HSCs. CONCLUSION: Quercetin is effective in reducing the expression of fibrogenic genes in fructose-activated human HSCs through downregulation of the TGF-ß/smad3 signaling pathway. Therefore, Quercetin possesses significant antifibrotic properties in hepatic fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Quercetina , Fructosa/metabolismo , Fructosa/farmacología , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/patología , Quercetina/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...