Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 623: 121908, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35700869

RESUMEN

Multiparticulate formulations allow for the design of specialized pharmaceutical dosage forms that cater to the needs of a wide range of patient demographics, such as pediatric and geriatric populations, by affording control over the release rate and facilitating the formulation of fixed-dose combination drugs. Melt spray-congealing (MSC) is a method for preparing multiparticulate dosage forms from a suspension or solid solution of active pharamaceutical ingredients (API) and a molten carrier matrix. Stearyl alcohol and poloxamer 407 mixtures are widely used as carrier matrices in MSC microsphere formulations. In this report, the phase equilibria of stearyl alcohol-poloxamer 407 mixtures were investigated by generating binary phase diagrams of composition, i.e. weight/weight percent of poloxamer 407 in stearyl alcohol, and temperature in the molten form and the solid state. The phase equilibria of the molten state were characterized by 1H NMR measurements. The miscibility curves of stearyl alcohol-poloxamer 407 molten mixtures revealed that stearyl alcohol and poloxamer 407 are not miscible in all proportions and that miscibility substantially increases with temperature. The phase equilibria of the solid state were characterized by DSC and PXRD experiments. The phase diagrams of the solid state indicate that stearyl alcohol and poloxamer 407 crystallize and melt separately and, thus, do not form a eutectic or a single phase. The phases equilibria of the bulk mixtures were compared to the phases observed in placebo MSC microspheres and it was determined that the microspheres consist of a mixture of thermodynamically stable and metastable stearyl alcohol crystals immediately after manufacture.


Asunto(s)
Alcoholes Grasos , Poloxámero , Anciano , Niño , Excipientes , Humanos , Poloxámero/química , Solubilidad
2.
Mol Pharm ; 19(2): 532-546, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34958588

RESUMEN

The present study systematically investigates the effect of annealing conditions and the Kolliphor P 407 content on the physicochemical and structural properties of Compritol (glyceryl behenate) and ternary systems prepared via melt cooling (Kolliphor P 407, Compritol, and a hydrophilic API) representing solid-lipid formulations. The physical properties of Compritol and the ternary systems with varying ratios of Compritol and Kolliphor P 407 were characterized using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS) and infrared (IR) spectroscopy, and hot-stage microscopy (HSM), before and after annealing. The change in the chemical profiles of different Compritol components as a function of annealing was evaluated using 1H NMR spectroscopy. While no change in the polymorphic form of API and Kolliphor P 407 occurred during annealing, a systematic conversion of the α- to ß-form was observed in the case of Compritol. Furthermore, the polymorphic transformation of Compritol was found to be dependent on the Kolliphor P 407 content. As per the Flory-Huggins mixing theory, higher miscibility was observed in the case of monobehenin-Kolliphor P 407, monobehenin-dibehenin, and dibehenin-tribehenin binary mixtures. The miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin was confirmed by 1H NMR analysis. The observed higher miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin is proposed as the trigger for the physical separation from the 1,3-diglyceride and triglycerides during melt solidification of the formulations. The phase separation is postulated as the mechanism underlying the formation of a stable ß-polymorphic form (a native form of 1,3-diglyceride) of Compritol upon annealing. This finding is expected to have an important implication for developing stable solid-lipid-surfactant-based drug formulations.


Asunto(s)
Excipientes , Tensoactivos , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Excipientes/química , Transición de Fase , Solubilidad , Tensoactivos/química
3.
Trends Biotechnol ; 40(5): 606-619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34689998

RESUMEN

In recent years, oral osmotic tablets have sparked a therapeutic paradigm for controlled-release dosage forms due to their intrinsic insensitivity to physiological and physicochemical factors. Despite these benefits, the design of an optimal osmotic technology is precluded by various challenges. These limitations include manufacturing complexity, the lack of understanding of the functional mechanics, and inadequate optimization for the desired bio-performance. This paper systematically reviews the development of an osmotic-driven drug delivery system and the strategy for a zero-order release profile with an emphasis on swellable core technology. We discuss the applicability of the various types of osmotic tablets, their suitability to specific needs, and factors that drive the technology selection. Finally, we review the challenges, opportunities, and future perspectives associated with osmotic tablets.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tecnología , Preparaciones de Acción Retardada , Ósmosis , Solubilidad , Comprimidos
4.
Eur J Pharm Sci ; 147: 105278, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32135269

RESUMEN

The present study investigates the drug release-governing microstructural properties of melt spray congealed microspheres encapsulating the drug crystals in the matrix of glyceryl behenate and poloxamer (pore former). The solid-state, morphology, and micromeritics of the microspheres were characterized, before and after annealing, using calorimetry, X-ray scattering, porosimetry, scanning electron microscopy, and, NMR diffusometry. The in vitro drug release from and water uptake by the microspheres were obtained. The extent and the rate of drug release from the microspheres increased with a high poloxamer content and at higher annealing temperature and RH. All the drug release profiles were describable using the Higuchi release kinetics pointing towards the diffusion controlled release, both before and after annealing. The annealing process led to the polymorphic conversion of lipid and the increase in the pore size, predominantly at a higher temperature and humidity and for a high poloxamer content. The poloxamer domain increased from an initial 300 nm, up to 2000 nm upon annealing. The water diffusion rate inside the annealed microsphere was twice as fast as for unannealed counterparts. The findings relate the overall phase and pore structure change of the microsphere to the increased drug release induced by annealing. This work serves as a basis for the rational understanding of the modification of the in vitro performance by annealing, a widely used post-process for solid lipid products.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Química Física , Liberación de Fármacos , Técnicas In Vitro , Lípidos , Microesferas , Tamaño de la Partícula , Poloxámero/química , Tensoactivos , Temperatura
5.
Int J Pharm ; 546(1-2): 226-234, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29772284

RESUMEN

Excipients are crucial components of most pharmaceutical formulations. In the case of a solid oral dosage formulation containing the salt form of a weakly ionizable drug, excipient selection is critical, as some excipients are known to cause salt disproportionation (conversion of salt to the free form). Therefore, robust formulation design necessitates an in-depth understanding of the factors impacting salt disproportionation during processing or storage as this can negatively impact product quality and performance. To date, there is an incomplete understanding of key excipient properties influencing salt disproportionation. Specifically, the potential roles of amorphous excipient glass transition temperature and excipient hygroscopicity, if any, on salt disproportionation are still not well understood. Furthermore, the relationship between the compression and the extent of salt disproportionation is an unknown factor. Herein, by utilizing various grades of polyvinylpyrrolidone (PVP), its copolymer, copovidone (PVPVA), and magnesium stearate, a systematic investigation of disproportionation was performed using pioglitazone HCl as a model salt of a weak base. It was observed that there was a poor correlation between excipient hygroscopicity and the rate and extent of disproportionation. However, powder compression into compacts enhanced the rate and extent of disproportionation. This work focused on disproportionation of the salt of a weak base, as basic drugs are more prevalent, however, salts of weak acids may have similar tendencies under relevant conditions. The knowledge gained from this study will help in understanding the role of various excipients with respect to salt disproportionation, paving the way for designing stable salt formulations.


Asunto(s)
Excipientes/química , Hipoglucemiantes/química , Povidona/química , Ácidos Esteáricos/química , Tiazolidinedionas/química , Agua/química , Química Farmacéutica , Pioglitazona , Sales (Química) , Comprimidos
7.
Mol Pharm ; 15(1): 40-52, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29202237

RESUMEN

Approximately 50% of solid oral dosage forms utilize salt forms of the active pharmaceutical ingredient (API). A major challenge with the salt form is its tendency to disproportionate to produce the un-ionized API form, decreasing the solubility and negatively impacting product stability. However, many of the factors dictating the tendency of a given salt to undergo disproportionation remain to be elucidated. In particular, the role of the solid-state properties of the salt on the disproportionation reaction is unknown. Herein, various solid forms of a model salt, miconazole mesylate (MM), were evaluated for their tendency to undergo disproportionation when mixed with basic excipients, namely tribasic sodium phosphate dodecahydrate (TSPd) and croscarmellose sodium (CCS), and exposed to moderate relative humidity storage conditions. It was observed that the rate and extent of salt disproportionation were significantly different for the various solid forms of MM. As expected, the amorphous salt was highly susceptible to disproportionation, while the dihydrate salt form was resistant to conversion under the conditions tested. In addition, binary excipient blends of amorphous and anhydrous forms exhibited a reduced extent of disproportionation at a higher relative humidity storage condition. This was due to the competitive kinetics between disproportionation to the free base and conversion to the dihydrate salt form. The results of this study provide important insights into the impact of solid-state form on susceptibility to disproportionation that can be utilized for rationally designing robust pharmaceutical formulations.


Asunto(s)
Excipientes/química , Mesilatos/química , Miconazol/química , Carboximetilcelulosa de Sodio/química , Composición de Medicamentos , Estabilidad de Medicamentos , Solubilidad
8.
J Control Release ; 213: 10-17, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26130417

RESUMEN

Ziprasidone, like many BCS Class II drugs with low intrinsic solubility and a strong tendency to crystallize from supersaturated solutions, presents significant technical challenges when developing an oral controlled release dosage form. In order to achieve acceptable bioavailability and prolonged exposures for once-daily dosing, good colonic absorption and a reliable controlled release (CR) technology are necessary. To this end, a novel solubilized drug form--coated crystals made by spray drying (CCSD), was formulated and progressed into human clinical studies. This report describes studies of colonic absorption for the CCSD using the Enterion™ capsule and a pharmacoscintigraphy study in which the CCSD was orally administered via a radiolabelled osmotic tablet formulation. These studies demonstrated that the probability of achieving the required drug solubilization in the colon with the CCSD concept and thereby the desired once daily pharmacokinetic profile was extremely low.


Asunto(s)
Antipsicóticos/administración & dosificación , Preparaciones de Acción Retardada/química , Piperazinas/administración & dosificación , Tiazoles/administración & dosificación , Administración Oral , Antipsicóticos/farmacocinética , Disponibilidad Biológica , Cápsulas , Colon/metabolismo , Humanos , Absorción Intestinal , Piperazinas/farmacocinética , Cintigrafía , Solubilidad , Tiazoles/farmacocinética
9.
Int J Pharm ; 461(1-2): 322-30, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24325937

RESUMEN

Oxidation of active pharmaceutical ingredients is a common chemical degradation process occurring in solid dosage forms. The aim of this study was to investigate the tendency of various sertraline salts to oxidize in powder blends containing a basic additive. A different extent of conversion of each salt to the free base was observed to occur in the presence of the basic additive, consistent with their respective pHmax values. Sertraline was found to undergo oxidation as the unioinized form, in both solution and powder blends that incorporated an oxidizing agent. In contrast, the ionized form of sertraline remained stable in both cases. Three sertraline salts undergoing a significant extent of conversion from salt to free form in the presence of tribasic sodium phosphate were found to oxidize extensively while sertraline benzoate which had a considerably lower extent of free base formation was more resistant to oxidation. The oxidative degradants were produced through oxidation at the amine functional group of sertraline which is where sertraline is ionized as the salt form. The link between oxidation tendency and the ionization state of sertraline in powder mixtures has thus been demonstrated in this study.


Asunto(s)
Excipientes/química , Inhibidores Selectivos de la Recaptación de Serotonina/química , Sertralina/química , Química Farmacéutica , Composición de Medicamentos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Polvos , Sales (Química) , Soluciones
10.
J Pharm Sci ; 98(1): 81-93, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18452177

RESUMEN

The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (T(g)), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric T(g) for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-T(g) TSC event (beta-relaxation) was observed for PVP at approximately 120 degrees C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90-140 degrees C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric T(g). TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric T(g).


Asunto(s)
Vidrio/química , Preparaciones Farmacéuticas/química , Polvos/química , Proteínas/química , Temperatura , Conductividad Térmica , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Desnaturalización Proteica , Porcinos
11.
J Pharm Sci ; 97(8): 3182-94, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18000812

RESUMEN

The physical stability of active pharmaceutical ingredients (APIs) formulated in the crystalline state may be compromised in the presence of excipients. In the present study, it is shown that at high relative humidity, several model crystalline drugs compacted into a matrix of poly(ethylene oxide) (PEO) may dissolve into the disordered regions of the polymer. The purpose of this project is to identify both the physicochemical properties of the API and the polymer which may lead to such a transformation and the mechanism of transformation. Crystalline drugs and PEO were physically mixed, compressed into tablets, and stored in a dessicator at 94% RH. The physical state of the drug and the polymer were determined using Raman spectroscopy and X-ray powder diffraction. The solubility of each drug in PEG 400 was measured by ultraviolet spectroscopy, the thermal properties of each compound were measured using differential scanning calorimetry, and the amount of water sorbed into these systems from the vapor phase was determined by gravimetric analysis. A spontaneous loss of crystallinity was observed for many of the model drugs when stored at high relative humidity and in the presence of PEO. In the absence of PEO, no changes in the crystalline material were observed. However, the structure of PEO was dramatically altered when exposed to high relative humidity. Specifically, it was found that PEO undergoes a very slow deliquescence increasing the disordered fraction of the polymer which facilitates the "dissolution" of the crystalline drug into these disordered regions. The degree of transformation, estimated from Raman spectroscopy, was found to qualitatively correlate with the aqueous solubility of the compounds. It can be concluded that for the systems studied here, the phase stability of the polymer was compromised at high relative humidity and the polymer underwent deliquescence. The equilibrium phase of several of the crystalline drugs studied here was then altered as evidenced by a loss in crystallinity.


Asunto(s)
Preparaciones Farmacéuticas/química , Polietilenglicoles/química , Agua/química , Rastreo Diferencial de Calorimetría , Cristalización , Cristalografía por Rayos X , Solubilidad , Espectrofotometría Ultravioleta , Espectrometría Raman
12.
Pharm Res ; 24(4): 780-90, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17372701

RESUMEN

PURPOSE: To propose and test a new accelerated aging protocol for solid-state, small molecule pharmaceuticals which provides faster predictions for drug substance and drug product shelf-life. MATERIALS AND METHODS: The concept of an isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a critical degradant level, is introduced for solid-state pharmaceuticals. Reliable estimates for temperature and relative humidity effects are handled using a humidity-corrected Arrhenius equation, where temperature and relative humidity are assumed to be orthogonal. Imprecision is incorporated into a Monte-Carlo simulation to propagate the variations inherent in the experiment. In early development phases, greater imprecision in predictions is tolerated to allow faster screening with reduced sampling. Early development data are then used to design appropriate test conditions for more reliable later stability estimations. RESULTS: Examples are reported showing that predicted shelf-life values for lower temperatures and different relative humidities are consistent with the measured shelf-life values at those conditions. CONCLUSIONS: The new protocols and analyses provide accurate and precise shelf-life estimations in a reduced time from current state of the art.


Asunto(s)
Formas de Dosificación , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Tecnología Farmacéutica/métodos , Ácido Ascórbico/química , Aspirina/química , Química Farmacéutica , Embalaje de Medicamentos , Humedad , Cinética , Modelos Químicos , Método de Montecarlo , Valor Predictivo de las Pruebas , Quinoxalinas/química , Proyectos de Investigación , Temperatura
13.
Pharm Res ; 23(10): 2254-68, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16941232

RESUMEN

PURPOSE: To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility. METHODS: Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T (g). RESULTS: A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T (g) and the relaxation time constant, tau(D)(beta), suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, tau(D)(beta). CONCLUSIONS: These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T (g) and reduces the relaxation time constant, tau(D)(beta) is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses.


Asunto(s)
Cristalización , Excipientes Farmacéuticos/química , Preparaciones Farmacéuticas/química , Rastreo Diferencial de Calorimetría , Cefamandol/química , Cefoxitina/química , Cefalotina/química , Fenómenos Químicos , Química Farmacéutica , Química Física , Cromatografía Líquida de Alta Presión , Ácido Etacrínico/química , Liofilización , Povidona/química , Soluciones , Sacarosa/química , Trehalosa/química
14.
Pharm Res ; 23(10): 2417-26, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16933098

RESUMEN

PURPOSE: Crystallization of drugs formulated in the amorphous form may lead to reduced apparent solubility, decreased rate of dissolution and bioavailability and compromise the physical integrity of the solid dosage form. The purpose of this work was to develop thermodynamic approaches, both practical and theoretical, that will yield a better understanding of which factors are most important for determining the ability of polymers to stabilize amorphous active pharmaceutical ingredients (API). MATERIALS AND METHODS: Lattice based solution models were used to examine miscibility criteria in API-polymer blends. Different methods were used to estimate the Flory-Huggins interaction parameter for model API-polymer systems consisting of felodipine or nifedipine with poly(vinylpyrrolidone) (PVP). These were melting point depression and determination of solubility parameters using group contribution theory. The temperature and enthalpy of fusion of crystalline API alone and the fusion temperature of the API in the presence of the polymer were measured by differential scanning calorimetry. The resultant thermal data were used to estimate the reduced driving force for crystallization and the solubility of the API in the polymer. RESULTS: Flory-Huggins theory predicts that, for typical API-polymer systems, the entropy of mixing is always favorable and should be relatively constant. Due to the favorable entropy of mixing, miscibility can still be achieved in systems with a certain extent of unfavorable enthalpic interactions. For the model systems, interaction parameters derived from melting point depression were negative indicating that mixing was exothermic. Using these interaction parameters and Flory-Huggins theory, miscibility was predicted for all compositions, in agreement with experimental data. A model was developed to estimate the solubility of the API in the polymer. The estimated solubility of the model APIs in PVP is low suggesting that kinetic rather than thermodynamic stabilization plays a significant role in inhibiting crystallization. CONCLUSIONS: The thermodynamics of API-polymer systems can be modeled using solution based theories. Such models can contribute towards providing an understanding of the compatibility between API and polymer and the mechanisms of physical stabilization in such systems.


Asunto(s)
Preparaciones Farmacéuticas/química , Polímeros/química , Algoritmos , Bloqueadores de los Canales de Calcio/química , Fenómenos Químicos , Química Física , Entropía , Felodipino/química , Predicción , Modelos Químicos , Nifedipino/química , Excipientes Farmacéuticos/química , Povidona/química , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...