Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Biology (Basel) ; 11(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36101403

RESUMEN

Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.

2.
Prog Mol Biol Transl Sci ; 179: 117-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785175

RESUMEN

Clustered Regularly Interspersed Short Palindromic Repeat-CRISPR-Associated (CRISPR-Cas) system has improved the ability to edit and control gene expression as desired. Genome editing approaches are currently leading the biomedical research with improved focus on direct nuclease dependent editing. So far, the research was predominantly intended on genome editing over the DNA level, recent adapted techniques are initiating to secure momentum through their proficiency to provoke modifications in RNA sequence. Integration of this system besides to lateral flow method allows reliable, quick, sensitive, precise and inexpensive diagnostic. These interesting methods illustrate only a small proportion of what is technically possible for this novel technology, but several technological obstacles need to be overcome prior to the CRISPR-Cas genome editing system can meet its full ability. This chapter covers the particulars on recent advances in CRISPR-Cas9 genome editing technology including diagnosis and technical advancements, followed by molecular mechanism of CRISPR-based RNA editing and diagnostic tools and types, and CRISPR-Cas-based biosensors.


Asunto(s)
Edición de ARN , Secuencia de Bases , Sistemas CRISPR-Cas/genética , ADN , Humanos , Edición de ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA