Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int Immunopharmacol ; 75: 105747, 2019 Oct.
Article En | MEDLINE | ID: mdl-31326719

BACKGROUND: Synthetic thymic peptides (sTPs) are used with chemotherapy to treat non-small cell lung cancer (NSCLC). In this study, we have performed a systematic review and meta-analysis of published trials to confirm the clinical efficacy and safety of sTPs, and determine the optimal types, usages, and sTP/chemotherapy combinations to produce the desired responses. MATERIALS AND METHODS: We collected all studies regarding combined sTP therapy and chemotherapy for NSCLC from the Chinese and English databases (up to October 2018). Bias risk was evaluated for each. Data for meta-analysis was extracted using a pre-designed form. Evidence quality was rated using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS: We included 27 randomized controlled trials containing 1925 patients, most with unclear bias risk. Combining sTPs with chemotherapy significantly increased the objective response rate [1.28, (1.13 to 1.45)], disease control rate [1.10, (1.01 to 1.18)], quality of life (QOL) [2.05, (1.62, 2.60)], and 1-year overall survival rate [1.43, (1.15 to 1.78)], with decreased risks of neutropenia, thrombocytopenia, and gastrointestinal reactions. Optimal conditions included treatment in combination with gemcitabine or navelbine and cisplatin, twice a week, with one 3-week cycle. In these conditions, thymosin α1 improved both antitumor immunity and tumor response. Most results had good robustness, and their quality ranged from moderate to very low. CONCLUSIONS: The results suggest that treatment with sTPs, especially thymosin α1, and concomitant chemotherapy is beneficial to the patient, and provide evidence for optimal treatment regimens that may increase patient QOL and survival.


Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Peptides/administration & dosage , Thymus Hormones/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , China , Humans , Peptides/adverse effects , Randomized Controlled Trials as Topic , Thymus Hormones/adverse effects , Treatment Outcome
2.
Ann Clin Transl Neurol ; 3(6): 443-54, 2016 Jun.
Article En | MEDLINE | ID: mdl-27547772

OBJECTIVE: Myasthenia gravis (MG) is an autoimmune condition in which neurotransmission is impaired by binding of autoantibodies to acetylcholine receptors (AChR) or, in a minority of patients, to muscle specific kinase (MuSK). There are differences in the dominant IgG subclass, pathogenic mechanisms, and treatment responses between the two MG subtypes (AChR or MuSK). The antibodies are thought to be T-cell dependent, but the mechanisms underlying their production are not well understood. One aspect not previously described is whether defects in central and peripheral tolerance checkpoints, which allow autoreactive B cells to accumulate in the naive repertoire, are found in both or either form of MG. METHODS: An established set of assays that measure the frequency of both polyreactive and autoreactive B cell receptors (BCR) in naive populations was applied to specimens collected from patients with either AChR or MuSK MG and healthy controls. Radioimmuno- and cell-based assays were used to measure BCR binding to AChR and MuSK. RESULTS: The frequency of polyreactive and autoreactive BCRs (n = 262) was higher in both AChR and MuSK MG patients than in healthy controls. None of the MG-derived BCRs bound AChR or MuSK. INTERPRETATION: The results indicate that both these MG subtypes harbor defects in central and peripheral B cell tolerance checkpoints. Defective B cell tolerance may represent a fundamental contributor to autoimmunity in MG and is of particular importance when considering the durability of myasthenia gravis treatment strategies, particularly biologics that eliminate B cells.

3.
Chin J Physiol ; 54(5): 318-23, 2011 Oct 31.
Article En | MEDLINE | ID: mdl-22135910

Patients with type 1 diabetes are at a risk of hypertension. However, the mechanisms behind the findings are not completely known. The aim of the present study was to investigate involvement of interleukin-6 (IL-6) on the contraction of abdominal aorta in rats with type 1 diabetes. IL-6 levels in the plasma of rats with streptozotocin (STZ)-induced diabetes were determined by ELISA. The abdominal aorta was dissected free of fat and connective tissues and then cut into spiral rings. The endothelium-denuded strip was vertically suspended in tissue chambers containing 5 ml Krebs solution at 37 degrees C and bubbled continuously with 95% O2-5% CO2. The effects of phenylephrine (Phe) on the contractile responses of abdominal aorta were recorded. The effects of IL-6 and anti-rat IL-6 antibody on the Phe-induced response were also examined. Plasma levels of IL-6 increased time-dependently in rats with STZ-induced diabetes. Phe caused concentration-dependent contraction in aortic rings. Phe-induced contractions were higher in vascular strips of STZ-induced diabetic rats than that of control rats. Pretreatment of vascular strips with IL-6 for 1 h did not cause contraction but enhanced the contraction in response to Phe. Treatment of the vascular strips with an anti-IL-6 antibody for 1 h decreased the Phe-induced contractions. These results suggest that IL-6 causes vascular smooth muscle contraction in abdominal aorta of rats with type 1 diabetes.


Aorta, Abdominal/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Interleukin-6/physiology , Muscle, Smooth, Vascular/physiopathology , Vasoconstriction , Animals , Male , Muscle, Smooth, Vascular/drug effects , Phenylephrine/pharmacology , Rats , Rats, Wistar , Streptozocin , Vasoconstriction/drug effects
...