Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 266: 122363, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244867

RESUMEN

While forward osmosis (FO) and reverse osmosis (RO) processes have been proven effective in rejecting organic pollutants, the rejection rate is highly dependent on compound and membrane characteristics, as well as operating conditions. This study aims to establish machine learning (ML) models for predicting the rejection of organic pollutants by FO and RO and providing insights into the underlying rejection mechanisms. Among the 14 ML models established, the random forest model (R2 = 0.85) and extreme gradient boosting model (R2 = 0.92) emerged as the best-performing models for FO and RO, respectively. Shapley additive explanations (SHAP) analysis identified the length of the compound, water flux, and hydrophobicity as the top three variables contributing to the FO model. For RO, in addition to the length of the compound and operating pressure, advanced variables including four molecular descriptors (e.g., ATSC2m and Balaban J) and three fingerprints (e.g., C=C double bond and carbonyl group) significantly contributed to the prediction. Besides, the associations between these highly ranked variables and their SHAP values shed light on the rejection mechanisms, such as size exclusion, adsorption, hydrophobic interaction, and electrostatic interaction, and illustrate the role of the operating parameters, such as the FO permeate water flux and RO operating pressure, in the rejection process. These findings provide interpretable predictive models for the removal of organic pollutants and advance the mechanistic understanding of the rejection mechanisms in the FO and RO processes.

2.
Environ Sci Technol ; 58(35): 15846-15854, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39169482

RESUMEN

Research has demonstrated the difficulty associated with degrading the conventional 1-2 carbon aliphatic halogenated byproducts of disinfectant reactions with organic matter [disinfection byproducts (DBPs)] within advanced oxidation process (AOP) units in potable reuse trains, but the efficacy of AOP units for treating the emerging classes of halogenated aromatic DBPs is unclear. We herein demonstrate more effective removal of 28 halogenated aromatic DBPs in the UV/H2O2 AOP at 222 nm (UV222) than in the conventional UV/H2O2 AOP at 254 nm. Direct photolysis of 28 halogenated aromatic DBPs was greatly enhanced at 222 nm with fluence-based photodecay rate constants of 4.31 × 10-4-1.53 × 10-2 cm2 mJ-1, which was mainly attributed to the higher molar absorption coefficients of halogenated aromatic DBPs at 222 nm than 254 nm. Generally, quantum yields of halogenated aromatic DBPs at both 222 and 254 nm followed the order of halophenols > halohydroxybenzaldehydes > halonitrophenols. All 28 halogenated aromatic DBPs exhibit high reactivity toward HO• with second-order rate constants ranging from 2.18 × 109 to 1.15 × 1010 M-1 s-1 determined by X-ray radiolysis. The UV fluence required to achieve 90% loss of halogenated aromatic DBPs in the UV222/H2O2 AOP was 75-95% lower than that in the UV254/H2O2 AOP, and 90% removal of most tested halogenated aromatic DBPs can be achieved in the UV222/H2O2 AOP within the UV fluence levels commonly applied in potable reuse (700-1000 mJ cm-2).


Asunto(s)
Desinfección , Peróxido de Hidrógeno , Oxidación-Reducción , Purificación del Agua , Peróxido de Hidrógeno/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Rayos Ultravioleta , Agua Potable/química , Desinfectantes/química , Fotólisis
3.
Water Res ; 257: 121682, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718654

RESUMEN

Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems. However, a current limitation of P-OFs is light management, specifically light oversaturation of the coated photocatalysts and short light transmission distances along fibers. This study overcomes this limitation and reveals strategies to improve the light dissipation uniformity along P-OFs, and demonstrates the performance of P-OFs on degrading a model micropollutant, carbamazepine (CBZ). Key tunable variables of fibers and light emission conditions, including photocatalyst coating patchiness (p), minimum light incident angles (θm), radiant flux launched to fibers (Φi), and fiber diameters (D), were modeled to establish their relationships with the light dissipation uniformity in TiO2-coated quartz optical fibers (TiO2-QOFs). We then validated modeling insights by conducting experiments to examine how these variables influence the generation of evanescent waves which are localized energy on fiber surfaces, leading to either photocatalyst activation or the recapture of unused light back into fibers. We observed substantial enhancements in evanescent waves generation by decreasing p and increasing θm, resulting in uniform light dissipation which reduces light oversaturation and improves light transmission distances. Moreover, these optimizations led to a remarkable three-fold improvement in CBZ degradation rates and a 65% reduction in energy consumption. Such improvement substantially reduces the capital and operational cost and enhances practicality of energy-efficient photocatalysis without additional chemical oxidants for micropollutant degradation in water storage tanks.


Asunto(s)
Fibras Ópticas , Cuarzo , Titanio , Contaminantes Químicos del Agua , Titanio/química , Cuarzo/química , Contaminantes Químicos del Agua/química , Catálisis , Purificación del Agua/métodos , Carbamazepina/química
4.
Environ Sci Technol ; 58(21): 9370-9380, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743251

RESUMEN

Utilizing solar light and water matrix components in situ to reduce the chemical and energy demands would make treatment technologies more sustainable for micropollutant abatement in wastewater effluents. We herein propose a new strategy for micropollutant abatement through dissolved organic matter (DOM)-mediated photosensitized activation of monochloramine (NH2Cl). Exposing the chlorinated wastewater effluent with residual NH2Cl to solar irradiation (solar/DOM/NH2Cl process) degrades six structurally diverse micropollutants at rate constants 1.26-34.2 times of those by the solar photolysis of the dechlorinated effluent (solar/DOM process). Notably, among the six micropollutants, the degradation rate constants of estradiol, acetaminophen, bisphenol A, and atenolol by the solar/DOM/NH2Cl process are 1.13-4.32 times the summation of those by the solar/DOM and solar/NH2Cl processes. The synergism in micropollutant degradation is attributed to the generation of reactive nitrogen species (RNS) and hydroxyl radicals (HO·) from the photosensitized activation of NH2Cl. Triplet state-excited DOM (3DOM*) dominates the activation of NH2Cl, leading to the generation of RNS, while HO· is produced from the interactions between RNS and other photochemically produced reactive intermediates (e.g., O2·- and DOM·+/·-). The findings advance the knowledge of DOM-mediated photosensitization and offer a sustainable method for micropollutant abatement in wastewater effluents containing residual NH2Cl.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Fotólisis , Luz Solar
5.
Environ Sci Technol ; 58(13): 6030-6038, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517061

RESUMEN

Increasing radical yields to reduce UV fluence requirement for achieving targeted removal of micropollutants in water would make UV-based advanced oxidation processes (AOPs) less energy demanding in the context of United Nations' Sustainable Development Goals and carbon neutrality. We herein demonstrate that, by switching the UV radiation source from conventional low-pressure UV at 254 nm (UV254) to emerging Far-UVC at 222 nm (UV222), the fluence-based concentration of HO• in the UV/peroxydisulfate (UV/PDS) AOP increases by 6.40, 2.89, and 6.00 times in deionized water, tap water, and surface water, respectively, with increases in the fluence-based concentration of SO4•- also by 5.06, 5.81, and 55.47 times, respectively. The enhancement to radical generation is confirmed using a kinetic model. The pseudo-first-order degradation rate constants of 16 micropollutants by the UV222/PDS AOP in surface water are predicted to be 1.94-13.71 times higher than those by the UV254/PDS AOP. Among the tested water matrix components, chloride and nitrate decrease SO4•- but increase HO• concentration in the UV222/PDS AOP. Compared to the UV254/PDS AOP, the UV222/PDS AOP decreases the formation potentials of carbonaceous disinfection byproducts (DBPs) but increases the formation potentials of nitrogenous DBPs.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Agua , Fotólisis , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Desinfección
6.
Nat Commun ; 15(1): 2617, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521862

RESUMEN

Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow power-to-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day-1 m-2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm-3. The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established water-hydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.

7.
Chemosphere ; 351: 141228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237782

RESUMEN

Wastewater non-potable reuse involves further processing of secondary effluent to a quality level acceptable for reuse and is a promising solution to combating water scarcity. Recalcitrant chromophores in landfill leachate challenge the water quality for non-potable reuse when leachate is co-treated with municipal wastewater. In this study, we first use multivariate statistical analysis to reveal that leachate is an important source (with a Pearson's coefficient of 0.82) of recalcitrant chromophores in the full-scale membrane bioreactor (MBR) effluent. We then evaluate the removal efficacies of chromophores by chlorination, breakpoint chlorination, and the chlorination-UV/chlorine advanced oxidation treatment. Conventional chlorination and breakpoint chlorination only partially remove chromophores, leaving a colour level exceeding the standards for non-potable reuse (>20 Hazen units). We demonstrate that pre-chlorination (with an initial chlorine dosing of 20 mg/L as Cl2) followed by UV radiation (with a UV fluence of 500 mJ/cm2) effectively degraded recalcitrant chromophores (>90%). By quantifying the electron donating capacity (EDC) and radical scavenging capacity (RSC) of the reclaimed water, we demonstrate that pre-chlorination reduces EDC and RSC by up to 64%, increases UV transmittance by 32%, and increases radical yields from UV photolysis of chlorine by 1.7-2.2 times. The findings advance fundamental understanding of the alteration of dissolved coloured substances by (photo)chlorination treatment and provide implications for applying advanced oxidation processes in treating wastewater effluents towards sustainable non-potable reuse.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Cloro , Halógenos , Oxidación-Reducción , Rayos Ultravioleta
8.
Sci Total Environ ; 912: 169241, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072271

RESUMEN

Groundwater has been known as the second largest freshwater storage in the world, following surface water. Over the years, groundwater has already been under overwhelming pressure to satisfy human needs for artificial activities around the world. Meanwhile, the most noticeable footprint of human activities is the impact of climate change. Climate change has the potential to change the physical and chemical properties of groundwater, thereby affecting its ecological functions. This study summarizes existing research affiliated with the possible effects of a changing climate on the quality of groundwater, including changes in water availability, increased salinity and pollution from extreme weather events, and the potentiality of seawater intrusion into coastal aquifers. Previous works dealing with groundwater-induced responses to the climate system and climate impacts on groundwater quality through natural and anthropogenic processes have been reviewed. The climate-induced changes in groundwater quality including pH, dissolved oxygen level, salinity, and concentrations of organic and inorganic compounds were assessed. Some future research directions are proposed, including exploring the potential changes in the occurrences and fate of micropollutants in groundwater, examining the relationship between the increase of microcystin in groundwater and climate change, studying the changes in the stability of metals and metal complexation, and completing studies across different regional climate regions.

9.
Water Res ; 247: 120794, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918199

RESUMEN

Understanding the reactivities of chlorine towards micropollutants is crucial for assessing the fate of micropollutants in water chlorination. In this study, we integrated machine learning with kinetic modeling to predict the reaction kinetics between micropollutants and chlorine in deionized water and real surface water. We first established a framework to predict the apparent second-order rate constants for micropollutants with chlorine by combining Morgan molecular fingerprints with machine learning algorithms. The framework was tuned using Bayesian optimization and showed high prediction accuracy. It was validated through experiments and used to predict the unreported apparent second-order rate constants for 103 emerging micropollutants with chlorine. The framework also improved the understanding of the structure-dependence of micropollutants' reactivity with chlorine. We incorporated the predicted apparent second-order rate constants into the Kintecus software to establish a hybrid model to profile the time-dependent changes of micropollutant concentrations by chlorination. The hybrid model was validated by experiments conducted in real surface water in the presence of natural organic matter. The hybrid model could predict how much micropollutants were degraded by chlorination with varied chlorine contact times and/or initial chlorine dosages. This study advances fundamental understanding of the reaction kinetics between chlorine and emerging micropollutants, and also offers a valuable tool to assess the fate of micropollutants during chlorination of drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Teorema de Bayes , Cinética , Contaminantes Químicos del Agua/análisis , Halogenación
10.
Water Res ; 242: 120234, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354840

RESUMEN

The performance of conventional photocatalytic reactors suffers from low photocatalyst mass-loading densities affixed to surfaces and light scattering losses or light attenuation in slurry reactors. These limitations are overcome by fabrication of high mass-loading g-C3N4 embedded metamaterial porous structures on flexible polymeric optical fibers (g-C3N4-POFs). In this study, the fabricated g-C3N4-POFs contain g-C3N4 with mass-loading 100-1000x higher than previouly reported, enabling efficient light delivery to g-C3N4 and improved pollutant mass transport within metamaterial porous structures. The key fabrication step involved using acetone, based on its high saturated vapor pressure and low dielectric constant, making roll-to-roll mass production of high mass-loading photocatalyst-embedded metamaterial POFs possible at room-temperature within seconds. Using bundles of 150 individual g-C3N4-POFs in the reactors, we achieved 4x higher degradation rates for micropollutants under visible light irradiation at 420 nm compared with equivalent mass-to-volume ratios of photocatalysts in a slurry suspension reactor. The bundled g-C3N4-POF reactor showed no degradation in the structural integrity or loss of pollutant degradation using deionized or model drinking water under accumulated HO• exposures of ∼4.5 × 10-9 M•s after 20 cycles of treatment. It operates continuously at g-C3N4 dosages equivalent to 100-1000 g/L and a water depth over 40 cm, making it a feasible alternative to conventional photocatalytic reactors.

11.
Water Res ; 241: 120169, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290191

RESUMEN

Concerns over human health risks associated with chemical contaminants (micropollutants) in drinking waters are rising due to the increased use of reclaimed water or water supplies impacted by upstream wastewater discharges. Ultraviolet (UV)-driven advanced oxidation processes (UV-AOPs) using radiation sources that emit at 254 nm have been developed as advanced treatments to degrade contaminants, while those UV-AOPs can be improved towards higher radical yields and lower byproduct formation. Several previous studies have suggested that Far-UVC radiation (200-230 nm) is a promising radiance source to drive UV-AOPs because the direct photolysis of micropollutants and production of reactive species from oxidant precursors can both be improved. In this study, we summarize from the literature the photodecay rate constants of five micropollutants by direct UV photolysis, which are higher at 222 than 254 nm. We experimentally determine the molar absorption coefficients at 222 and 254 nm of eight oxidants commonly used in water treatment and present the quantum yields of the oxidant photodecay. Our experimental results also show that the concentrations of HO·, Cl·, and ClO· generated in the UV/chlorine AOP can be increased by 5.15-, 15.76-, and 2.86-fold, respectively, by switching the UV wavelength from 254 to 222 nm. We also point out the challenges of applying Far-UVC for micropollutant abatement in water treatment, including the strong light screening effect of matrix components (e.g., carbonate, nitrate, bromide, and dissolved organic matter), the formation of byproducts via new reaction pathways, and the needs to improve the energy efficiency of the Far-UVC radiation sources.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Oxidación-Reducción , Cloro , Oxidantes , Purificación del Agua/métodos , Rayos Ultravioleta , Peróxido de Hidrógeno
12.
Environ Sci Technol ; 57(47): 18735-18743, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126657

RESUMEN

Dichloramine (NHCl2) often coexists with monochloramine (NH2Cl) in reverse osmosis (RO) permeate in potable reuse scenarios when NH2Cl is added upstream of RO for membrane fouling control such that UV photolysis of NHCl2 occurs during the downstream UV/chloramine process. However, the formation of reactive nitrogen species (RNS) and their incorporation into byproducts during the UV/NHCl2 process are largely unknown. This study quantitatively evaluated the generation of RNS in the UV/NHCl2 process and investigated the role of RNS in micropollutant transformation. UV photolysis of NHCl2 produced comparable RNS concentration to that of NH2Cl at the same oxidant dosage (100 µM) at pH 5.5. Under the experimental conditions, the RNS contributed greatly (40.6%) to N,N-diethyl-3-methylbenzamide (DEET) degradation. By using 15N-labeling and mass spectrometry methods, seven nitrogenous byproducts of DEET degradation with the incorporation of nitrogen originating from the RNS were detected. Among these seven byproducts, six were identified to contain a nitro group (-NO2). While the UV/NHCl2 process formed comparable intensities of -NO-containing products to those in the UV/NH2Cl process, the later process formed 3-91% higher intensities of -NO2-containing products. These findings are essential in furthering our understanding of the contribution of the UV/NHCl2 process in potable reuse scenarios.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Especies de Nitrógeno Reactivo , Fotólisis , Nitrógeno , DEET , Dióxido de Nitrógeno , Oxidación-Reducción , Rayos Ultravioleta , Cloraminas , Óxido Nítrico , Cloro
13.
Environ Sci Technol ; 57(47): 18867-18876, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37158565

RESUMEN

Increasing the radical yield and reducing energy consumption would enhance the sustainability and competitiveness of advanced oxidation processes (AOPs) for micropollutant degradation in water. We herein report a novel AOP coupling far-UVC radiation at 222 nm with chlorinated cyanurates (termed the UV222/Cl-cyanurates AOP) for radical generation and micropollutant abatement in water. We experimentally determined the concentrations of HO•, Cl•, and ClO• in the UV222/Cl-cyanurates AOP in deionized water and swimming pool water. The radical concentrations are 10-27 times and 4-13 times, respectively, higher than those in the UV254/Cl-cyanurates AOP and the well-documented UV254/chlorine AOP under comparable conditions (e.g., same UV fluence and oxidant dosing). We determined the molar absorption coefficients and innate quantum yields of two chlorine species and two Cl-cyanurates at 222 nm and incorporated these parameters into a kinetic model. The model enables accurate prediction of oxidant photodecay rates as well as the pH impact on radical generation in the UV222/Cl-cyanurates AOP. We predicted the pseudo-first-order degradation rate constants of 25 micropollutants in the UV222/Cl-cyanurates AOP and demonstrated that many micropollutants can be degraded by >80% with a low UV fluence of 25 mJ cm-2. This work advances the fundamental photochemistry of chlorine and Cl-cyanurates at 222 nm and offers a highly effective engineering tool in combating micropollutants in water where Cl-cyanurates are suitable to use.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Agua , Cloro , Oxidación-Reducción , Rayos Ultravioleta , Oxidantes
14.
J Hazard Mater ; 445: 130624, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056023

RESUMEN

Landfill leachate contains dissolved organic matter (DOM) exhibiting high ultraviolet absorbance at 254 nm (UVA254). The UVA254 limits leachate co-treatment with municipal sewage by hindering the downstream UV disinfection efficiency at wastewater treatment plants. Here, we alleviated the UVA254 by timing the radiation in a UV/electrooxidation (UV/EO) process to accelerate reactive species formation. At 200 A·m-2, the UV radiation was delayed by 10 min to accumulate 21 mg·L-1 as Cl2, which enhanced the initial radical formation rate by 5.25 times compared with a simultaneous UV/EO. The timed operation increased the steady-state concentrations of ClO• by 700 times to 4.11 × 10-14 M and reduced the leachate UVA254 by 78.2% after 60 min. We identified that aromatic formulas with low oxygen content were susceptible to UV/EO from Fourier-transform ion cyclotron resonance mass spectrometry analysis. The toxicity of the treated leachate and generated byproducts was assessed through specific oxygen uptake rates (SOUR) and developmental assays with Platynereis dumerilii. After quenching the residual chlorine, leachate co-treatment at 3.5% v/v presented minimal toxicological risk. Our findings provide operational insights for applying UV/EO in high UVA254 matrices such as landfill leachate.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Rayos Ultravioleta , Oxígeno/análisis
15.
Water Res ; 235: 119889, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36966682

RESUMEN

The photolysis of monochloramine (NH2Cl), a widely used disinfectant, under UVC irradiation produces different radicals for the micropollutant degradation. For the first time, this study demonstrates the degradation of bisphenol A (BPA) via the NH2Cl activation by graphitic carbon nitride (g-C3N4) photocatalysis using visible light-LEDs at 420 nm, termed as the Vis420/g-C3N4/NH2Cl process. The process produces •NH2, •NH2OO, •NO and •NO2 via the eCB-- and O2•--induced activation pathways and •NHCl and NHClOO• via the hVB+-induced activation pathway. The produced reactive nitrogen species (RNS) enhanced 100% of the BPA degradation compared with the Vis420/g-C3N4. Density functional theory calculations confirmed the proposed NH2Cl activation pathways and further demonstrated that eCB-/O2•- and hVB+ induced the cleavage of N-Cl and N-H bonds in NH2Cl, respectively. The process converted 73.5% of the decomposed NH2Cl to nitrogen-containing gas, compared with that of approximately 20% in the UVC/NH2Cl process, leaving much less ammonia, nitrite and nitrate in water. Among different operating conditions and water matrices tested, of particular significance is natural organic matter of 5 mgDOC/L only reduced 13.1% of the BPA degradation compared against that of at least 46% reduction in the UVC/NH2Cl process. Only 0.017-0.161 µg/L of disinfection byproducts were produced, two orders of magnitudes lower than that in the UVC/chlorine and UVC/NH2Cl processes. The combined use of visible light-LEDs, g-C3N4 and NH2Cl significantly improves the micropollutant degradation and reduces the energy consumption and byproduct formation of the NH2Cl-based AOP.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Especies de Nitrógeno Reactivo , Cloro , Luz , Agua , Catálisis
16.
Water Res ; 231: 119646, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709566

RESUMEN

UV/chlorine process is a promising advanced treatment to eliminate pathogen and remove refractory micropollutants for reclamation of municipal secondary effluent. However, effluent organic matter (EfOM) featuring high organic nitrogen content serves as a potential precursor for nitrogenous disinfection byproducts (N-DBPs) of health concern. The molecular-level alteration of a hydrophobic (HPO) EfOM fraction and a transphilic (TPI) EfOM fraction isolated from the same municipal effluent and the formation of N-DBPs in the UV/chlorine were tracked by ultrahigh-resolution mass spectrometry. Compared with chlorination, UV/chlorine induced a significantly greater modification on the molecular composition of EfOM and resulted in formation of unique formulae and chlorinated molecules with higher degree of oxidation, lower aromaticity, and less carbon number due to the involvement of reactive radical species. For both EfOM fractions, UV/chlorine formed more diverse DBPs with higher intensity and Cl-incorporation than chlorination. The TPI fraction of EfOM characterized by higher O/C and N/C ratios generated more N-DBPs with higher intensity clustered in the high O/C region than the HPO fraction of EfOM by both UV/chlorine and chlorination. Totally, 207 and 117 nitrogen-containing chlorinated formulae were recorded after UV/chlorine treatment of TPI and HPO, respectively. Precursor tracking found a greater number of DBPs were originated from raw EfOM through electrophilic substitution pathway rather than chlorine addition. Toxicity bioassays demonstrated that DBPs can trigger oxidative stress-induced DNA damage, while HPO fraction of EfOM dominated the induction of cytotoxicity. However, no correlation could be established between the diversity/abundance of N-DBPs and the level of DNA damage. A total of 22 DBPs with a significant rank correlation with DNA damage were identified, while C8H6O5NCl was found as the N-DBP with the strongest correlation. The potential toxic chlorine-containing formula with the most abundant intensity was assigned to C5HO3Cl3. This study suggests that the character and transformation of EfOM and associated toxicity is critical to evaluate the UV/chlorine process toward practical application.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/química , Halogenación , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Halógenos , Desinfección , Espectrometría de Masas , Desinfectantes/análisis
17.
Environ Sci Technol ; 57(1): 150-159, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36512687

RESUMEN

Due to the complexities of the interactions between ammonia, chlor(am)ine, and intermediate species such as ONOOH, the radical formation in breakpoint chlorination and the consequential removal of micropollutants remain largely unexplored. In this study, the dominant generation pathway of HO•, as a primary radical in breakpoint chlorination, was examined, and the generations of HO•, reactive chlorine species (RCS), and reactive nitrogen species (RNS) were quantitatively evaluated. A dissolved oxygen (DO)-independent pathway was verified by 18O labeling and contributed over 90% to HO• generation. The commonly believed pathway, the decomposition of ONOOH involving DO, contributed only 7% to HO• formation in breakpoint chlorination. The chlorine to nitrogen (Cl/N) ratio and pH greatly affected the generations and speciations of the reactive species. An optimum Cl/N mass ratio for HO•, Cl2•-, and RNS generations occurred at the breakpoint (i.e., Cl/N mass ratio = 9), whereas excessive free chlorine shifted the radical speciation toward ClO• at Cl/N mass ratios above the breakpoint. Basic conditions inhibited the generations of HO• and RNS but significantly promoted that of ClO•. These findings improved the fundamental understanding of the radical chemistry of breakpoint chlorination, which can be extended to estimate the degradations of micropollutants of known rate constants toward the reactive species with influences from the Cl/N ratio and pH in real-world applications.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro/química , Halogenación , Radical Hidroxilo/química , Nitrógeno/química , Oxígeno , Cloruros , Contaminantes Químicos del Agua/química , Rayos Ultravioleta , Cinética
18.
Water Res ; 225: 119120, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36126426

RESUMEN

The triplet states of dissolved organic matter (3DOM*) have been well known to oxidize various organic contaminants, but evidence of their reducing properties are largely scarce. In this work, chlorine dioxide (ClO2) as a single-electron oxidant was used as a probe to evaluate the reduction property of 3DOM*. The reduction of ClO2 to chlorite was observed in the solutions of model photosensitizers (i.e., 4-carboxybenzophenone, benzophenone, acetophenone, 3-methoxyacetophenone, naphthalene, and xanthone) during UV irradiation with the presence of ClO2, though they are resistant to ClO2 oxidation in the dark. The reducing property of the triplet states of photosensitizers was verified and their second-order reaction rate constants with ClO2 were determined to be in the range of 1.45(± 0.03)× 109 - 2.18(± 0.06) × 109 M-1 s-1 at pH 7.0. The quenching tests excluded the role of other reactive species (e.g., HO•, O(3P), Cl•, ClO• and HOCl/OCl-, O2•- and eaq-) in ClO2 reduction to chlorite when using model photosensitizers and DOM isolates. Chlorite formation was 48.1-90.4% and 4812.8-7721.8% higher during UV irradiation with the presence of ClO2 and DOM than those without UV irradiation or without DOM present, respectively. The enhancement was attributed to the enhanced electron donating capacity (chlorite precursors) of DOM upon UV irradiation and also to 3DOM* acting as an electron donor reducing ClO2 to chlorite. This study highlighted the important role of 3DOM* as a reductant.


Asunto(s)
Compuestos de Cloro , Purificación del Agua , Xantonas , Fármacos Fotosensibilizantes , Sustancias Reductoras , Compuestos de Cloro/química , Óxidos/química , Oxidación-Reducción , Oxidantes , Benzofenonas , Naftalenos , Acetofenonas , Cloro/química
19.
Water Res ; 222: 118886, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917667

RESUMEN

Chlorine dioxide (ClO2) is used as an oxidant or disinfectant in (waste)water treatment, whereas sulfite is a prevalent reducing agent to quench the excess ClO2. This study demonstrated that seven micropollutants with structural diversity could be rapidly degraded in the reaction between ClO2 and sulfite under environmentally relevant conditions in synthetic and real drinking water. For example, carbamazepine, which is recalcitrant to standalone ClO2 or sulfite, was degraded by 55%-80% in 10 s in the ClO2/sulfite process at 30-µM ClO2 and 30-µM sulfite concentrations within a pH range of 6.0-11.0. Results from experiments and a kinetic model supported that chlorine monoxide (ClO·) and sulfate radicals (SO4·-) were generated in the ClO2/sulfite process, while hydroxyl radical generation was insignificant. Apart from radicals, dichlorine trioxide (Cl2O3) was generated and largely contributed to micropollutant degradation, supported by experimental results using stopped-flow spectrometry and quantum chemical calculations. The impacts of pH, sulfite dosage, and water matrix components (chloride, bicarbonate, and natural organic matter) on micropollutant abatement in the ClO2/sulfite process were evaluated and discussed. When treating the real potable water, the concentrations of organic (five regulated disinfection byproducts) and inorganic byproducts (chlorite and chlorate) formed in the ClO2/sulfite process were all below the drinking water standards. This study disclosed fundamental knowledge advancements relevant to the reaction mechanisms between ClO2 and sulfite, and highlighed a novel process to abate micropollutants in water and wastewater.


Asunto(s)
Compuestos de Cloro , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/química , Compuestos de Cloro/química , Desinfección , Agua Potable/análisis , Oxidación-Reducción , Óxidos/química , Sulfitos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
20.
Water Res ; 222: 118870, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870395

RESUMEN

Nitrogenous disinfection byproducts (N-DBPs) can be produced from dissolved organic matter (DOM) during the disinfection of secondary wastewater effluent. This study examined the transformation of DOM and the abatement of N-DBP precursors during different types of biological wastewater treatment (e.g., anaerobic/anoxic/oxic activated sludge processes and membrane bioreactor) using high-performance size exclusion chromatography (HPSEC) with dissolved organic carbon, UV, and fluorescence detectors. DOM with molecule weight (MW) larger than 3 kDa and protein-like substances smaller than 0.3 kDa was effectively bio-transformed, whereas DOM fractions with MW in the range of 0.3-3 kDa were the most bio-refractory. Complete nitrification was beneficial to the removal of small amino sugar-like and protein-like molecules (< 0.3 kDa). Haloacetonitrile (HAN) precursors were recalcitrant to biological treatment with a median removal of 17%. Halonitromethane (HNM) and N-nitrosamine (NA) precursors tended to be effectively removed in complete nitrification conditions. The abundance of low-molecular-size protein-like substances (< 0.3 kDa) was significantly correlated with the formation potential of HNM, NA, and total N-nitrosamine (TONO) in post-chloramination (r = 0.81, 0.62, and 0.68, respectively, p < 0.01). This study improved the understanding of DOM transformation and the removal of N-DBPs precursors in wastewater treatment and pointed out the benefit of provision of complete nitrification in removing low-molecular-size protein-like substances and NA and HNM precursors.


Asunto(s)
Nitrosaminas , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Materia Orgánica Disuelta , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA