Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 188(9): 291, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34363101

RESUMEN

A sensitive and turn-on fluorescence nanoprobe based on core-shell Ag@Au nanoparticles (Ag@AuNPs) as a fluorescence receptor and red emissive graphene quantum dots (GQDs) as a donor was fabricated. They were conjugated together through π-π stacking between the GQDs and single-strand DNA modified at the Ag@AuNPs surface. The absorption spectrum of the receptor significantly overlapped with the donor emission spectrum, leading to a strong Förster resonance energy transfer (FRET) and thus a dramatic quenching. The sensing mechanism relies on fluorescence recovery following DNA cleavage by •OH produced from Fenton-like reaction between the peroxidase-like Ag nanocore and H2O2. The red emissive feature (Ex/Em, 520 nm/560 nm) provides low background in physiological samples. The •OH production, great spectrum overlapping, and red emission together contributes to good sensitivity and living cell imaging capability. The fluorescence assay (intensity at 560 nm) achieves a low detection limit of 0.49 µM H2O2 and a wide linear range from 5 to 200 µM, superior to most of the reported fluorescent probes. The RSD value for 100 µM H2O2 was 1.4%. The nanoprobe exhibits excellent anti-interferences and shows low cytotoxicity. The recovery of 100 µM standard H2O2 in a cancer cell lysate was 85.8%. Most satisfactorily, it can realize monitoring and imaging H2O2 in living cells. This study not only presents a sensitive H2O2 probe but also provides a platform for detecting other types of reactive oxygen species.


Asunto(s)
Colorantes Fluorescentes/uso terapéutico , Oro/química , Grafito/química , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Plata/química , Humanos
2.
J Dent Sci ; 16(3): 937-947, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34141108

RESUMEN

BACKGROUND/PURPOSE: Relieving immuno-inflammatory responses is the prerequisite step for treating periodontitis. The angiogenic small molecule, dimethyloxalylglycine (DMOG), and osteoinductive inorganic nanomaterial, nanosilicate (nSi) have a powerful effect on bone regeneration, whereas the roles in osteoimmunomodulation have not been totally uncovered. Our study aimed to explore the immunomodulatory effect of DMOG/nSi-loaded fibrous membranes on periodontal bone remodeling. MATERIALS AND METHODS: The fibrous membranes were prepared by incorporating DMOG and nSi into poly (lactic-co-glycolic acid) (PLGA) with electrospinning. The morphology features, surface chemical property and biocompatibility of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the fibrous membranes were implanted into rat periodontal defects, bone remodeling potential and immunomodulatory effect were evaluated by micro-computed tomography (micro-CT), histological evaluation and immunohistochemical analysis. RESULTS: DMOG/nSi-PLGA membranes possessed favorable physicochemical properties and biocompatibility. After the fibrous membranes implanted into periodontal defects, DMOG/nSi-PLGA membranes could relieve immuno-inflammatory responses of the defects (reduction of inflammatory cell infiltration, CD40L and CD11b-positive cells), increased CD206-positive M2 macrophages, and eventually facilitated periodontal bone regeneration. CONCLUSION: DMOG/nSi-PLGA fibrous membranes exert protective effects during periodontal bone defect repairing, and steer immune response towards bone regeneration. Consequently, DMOG/nSi-PLGA fibrous membranes may serve as a promising scaffold in periodontal tissue engineering.

3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(2): 153-163, 2021 Apr 01.
Artículo en Chino | MEDLINE | ID: mdl-33834669

RESUMEN

OBJECTIVES: This study was performed to clarify the effects of sitagliptin on Porphyromonas gingivalis-lipopolysaccharide (LPS)-induced inflammatory response in human gingival fibroblasts (HGFs), explore the molecular mechanism of its roles, and provide a foundation for clinical therapeutics in periodontitis. METHODS: Healthy gingival samples were collected from the donors. HGFs were isolated with enzymic digestion method and identified. The effects of LPS and sitagliptin on cell viability were detected by cell-counting kit-8 (CCK8). The mRNA levels of inflammatory cytokines, namely, interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), and superoxide dismutase 2 (SOD2), were evaluated by quantity real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immune sorbent assay (ELISA) was used to measure the secretion protein levels of IL-6, IL-8, and CCL2. Western blot analysis was used to further investigate the activation of nuclear factor (NF)-κB signaling pathway. The effect of NF-κB pathway inhibitor BAY11-7082 on LPS-induced HGF inflammatory cytokines at the gene level was verified by qRT-PCR. RESULTS: Low concentrations of sitagliptin (0.1, 0.25, and 0.5 µmol·L-1) did not affect HGF growth in 24 and 48 h, whereas high concentrations of sitagliptin (5-1 000 µmol·L-1) significantly inhibited cell proliferation. Sitagliptin suppressed 5 µg·mL-1 of LPS-induced IL-6, IL-8, CCL2, and SOD2 gene expression levels in HGF in a concentration-dependent manner. Furthermore, sitagliptin significantly decreased the elevated secretion of IL-6, IL-8, and CCL2 protein induced by LPS. Western blot analysis showed that 0.5 µmol·L-1 of sitagliptin significantly inhibited LPS-induced NF-κB signaling pathway activation. Results of qRT-PCR analysis indicated that 0.5 µmol·L-1 of sitagliptin and 5 µmol·L-1 of BAY11-7082 significantly inhibited LPS-induced IL-6, IL-8, CCL2, and SOD2 gene expressions. CONCLUSIONS: Sitagliptin could significantly inhibit LPS-induced HGF inflammatory response by blocking the NF-κB signaling pathway activation.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Fibroblastos , Encía/metabolismo , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Fosfato de Sitagliptina
4.
Huan Jing Ke Xue ; 34(7): 2694-703, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24028001

RESUMEN

The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).


Asunto(s)
Cerámica/química , Níquel/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Adsorción , Níquel/química , Porosidad , Eliminación de Residuos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...