Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Angew Chem Int Ed Engl ; 63(17): e202400619, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38403860

The unstable interface between Li metal and ethylene carbonate (EC)-based electrolytes triggers continuous side reactions and uncontrolled dendrite growth, significantly impacting the lifespan of Li metal batteries (LMBs). Herein, a bipolar polymeric protective layer (BPPL) is developed using cyanoethyl (-CH2CH2C≡N) and hydroxyl (-OH) polar groups, aiming to prevent EC-induced corrosion and facilitating rapid, uniform Li+ ion transport. Hydrogen-bonding interactions between -OH and EC facilitates the Li+ desolvation process and effectively traps free EC molecules, thereby eliminating parasitic reactions. Meanwhile, the -CH2CH2C≡N group anchors TFSI- anions through ion-dipole interactions, enhancing Li+ transport and eliminating concentration polarization, ultimately suppressing the growth of Li dendrite. This BPPL enabling Li|Li cell stable cycling over 750 cycles at 10 mA cm-2 for 2 mAh cm-2. The Li|LiNi0.8Mn0.1Co0.1O2 and Li|LiFePO4 full cells display superior electrochemical performance. The BPPL provides a practical strategy to enhanced stability and performance in LMBs application.

2.
Chem Sci ; 13(32): 9277-9284, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-36093012

Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li+. The Li-Au alloy is formed during the first cycle of Li plating/stripping, which causes Li+ deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li+ concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO4 cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi0.8Co0.1Mn0.1O2 cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries.

3.
Molecules ; 27(16)2022 Aug 15.
Article En | MEDLINE | ID: mdl-36014438

Solid electrolyte interphase (SEI) on a Li anode is critical to the interface stability and cycle life of Li metal batteries. On the one hand, components of SEI with the passivation effect can effectively hinder the interfacial side reactions to promote long-term cycling stability. On the other hand, SEI species that exhibit the active site effect can reduce the Li nucleation barrier and guide Li deposition homogeneously. However, strategies that only focus on a separated effect make it difficult to realize an ideal overall performance of a Li anode. Herein, a dual functional artificial SEI layer simultaneously combining the passivation effect and the active site effect is proposed and constructed via a facial surface chemistry method. Simultaneously, the formed LiF component effectively passivates the anode/electrolyte interface and contributes to the long-term stable cycling performance, while the Li-Mg solid solution alloy with the active site effect promotes the transmission of Li+ and guides homogeneous Li deposition with a low energy barrier. Benefiting from these advantages, the Li||Li cell with the modified anode performs with a lower nucleation overpotential of 2.3 mV, and an ultralong cycling lifetime of over 2000 h at the current density of 1 mA cm-2, while the Li||LiFePO4 full battery maintains a capacity retention of 84.6% at rate of 1 C after 300 cycles.

4.
ACS Appl Mater Interfaces ; 13(1): 681-687, 2021 Jan 13.
Article En | MEDLINE | ID: mdl-33398985

High-energy-density Li-metal batteries are of great significance in the energy storage field. However, the safety hazards caused by Li dendrite growth and flammable organic electrolytes significantly hinder the widespread application of Li-metal batteries. In this work, we report a highly safe electrolyte composed of 4 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in the single solvent trimethyl phosphate (TMP). By regulating the solvation structure of the electrolyte, a combination of nonflammability and Li dendrite growth suppression was successfully realized. Both Raman spectroscopy and molecular dynamics simulations revealed improved dendrite-free Li anode originating from the unique solvation structure of the electrolyte. Symmetric Li/Li cells fabricated using this nonflammable electrolyte had a long cycle life of up to 1000 h at a current density of 0.5 mA cm-2. Furthermore, the Li4Ti5O12/TMP-4/Li full cells also exhibited excellent cycling performance with a high initial discharge capacity of 170.5 mAh g-1 and a capacity retention of 92.7% after 200 cycles at 0.2 C. This work provides an effective approach for the design of safe electrolytes with favorable solvation structure toward the large-scale application of Li-metal batteries.

5.
Adv Mater ; 32(40): e2004017, 2020 Oct.
Article En | MEDLINE | ID: mdl-32876955

Aqueous batteries are promising devices for electrochemical energy storage because of their high ionic conductivity, safety, low cost, and environmental friendliness. However, their voltage output and energy density are limited by the failure to form a solid-electrolyte interphase (SEI) that can expand the inherently narrow electrochemical window of water (1.23 V) imposed by hydrogen and oxygen evolution. Here, a novel (Li4 (TEGDME)(H2 O)7 ) is proposed as a solvation electrolyte with stable interfacial chemistry. By introducing tetraethylene glycol dimethyl ether (TEGDME) into a concentrated aqueous electrolyte, a new carbonaceous component for both cathode-electrolyte interface and SEI formation is generated. In situ characterizations and ab initio molecular dynamics (AIMD) calculations reveal a bilayer hybrid interface composed of inorganic LiF and organic carbonaceous species reduced from Li+ 2 (TFSI- ) and Li+ 4 (TEGDME). Consequently, the interfacial films kinetically broaden the electrochemical stability window to 4.2 V, thus realizing a 2.5 V LiMn2 O4 -Li4 Ti5 O12 full battery with an excellent energy density of 120 W h kg-1 for 500 cycles. The results provide an in-depth, mechanistic understanding of a potential design of more effective interphases for next-generation aqueous lithium-ion batteries.

6.
ACS Appl Mater Interfaces ; 11(17): 15537-15542, 2019 May 01.
Article En | MEDLINE | ID: mdl-30901190

Flexible solid-state zinc-air batteries are promising energy technologies with low cost, superior performance and safety. However, flexible electrolytes are severely limited by their poor mechanical properties. Here, we introduce flexible bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) composite hydrogel electrolytes (BPCE) based on bacterial cellulose (BC) microfibers and poly(vinyl alcohol) (PVA) by an in situ synthesis. Originating from the hydrogen bonds among BC microfibers and PVA matrix, these composites form load-bearing percolating dual network and their mechanical strength is increased 9 times (from 0.102 MPa of pristine PVA to 0.951 MPa of 6-BPCE). 6-BPCE shows extremely high ionic conductivities (80.8 mS cm-1). In addition, the solid-state zinc-air batteries can stably cycle over 440 h without large discharge and charge polarizations equipped with zinc anode and Co3O4@Ni cathode. Moreover, flexible solid-state zinc-air batteries can cycle well at any bending angle. As flexible electrolytes, they open up a new opportunity for the development of superior-performance, flexible, rechargeable, zinc-air batteries.

...