Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133165, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061127

RESUMEN

Emission of toxic gaseous sulfur dioxide (SO2) and its derivative bisulfite (HSO3-) from various industrial applications, like food processing, transportation, and the coking process, has raised substantial concerns regarding environmental quality and public health. The probes for specific and sensitive detection of SO2 derivatives plays an essential role in their regulation, and ultimately mitigating their environmental and health implications, but the one that can detect SO2 derivatives onsite by end users remains limited. Herein, we report a new near-infrared fluorescence probe (SL) for rapid and onsite detection of SO2 derivative, HSO3- in industrial wastewater, food samples and for sensing its interaction with biological organisms. The SL is developed through coupling of quinolinium and coumarin moiety through an electron deficit CC bond that can specifically react with HSO3- via a Michael addition. By recording the blue shift of absorption and emission spectra, SL can sensitively detect HSO3- (limit of detection, 38 nM) in aqueous solution within 40 s SL is biocompatible, can be used for evaluating toxicity of SO2 derivatives in living organisms. The preparation of SL-stained test paper allows the colorimetric/fluorometric analysis for quantification of HSO3- onsite in food, river and coking wastewater samples using a smartphone. The successful development of SL not only provides a new tool to investigate HSO3- in biological, food and environmental systems, but also potentially promotes the application of fluorescence technique for rapid and onsite analysis of real-world samples by end users.


Asunto(s)
Colorantes Fluorescentes , Dióxido de Azufre , Humanos , Colorantes Fluorescentes/química , Dióxido de Azufre/análisis , Aguas Residuales , Alimentos , Fluorometría , Células HeLa
2.
Anal Chim Acta ; 1279: 341783, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827680

RESUMEN

We report the development of a bifunctional near-infrared fluorescent probe (QZB) for selective sensing of bisulfite (HSO3-) and hypochlorous acid (HOCl). The synergistic detection of HSO3- and HOCl was achieved via a C=C bond recognition site. In comparison with the red-fluorescence QZB, two different products with non-fluorescence and paleturquoise fluorescence were produced by the recognition of QZB towards HSO3- and HOCl respectively, which can realize effectively the dual-functional detection of HSO3- and HOCl. QZB features prominent preponderances of dual-function response, near-infrared emission, reliability at physiological pH, low cytotoxicity and high sensitivity to HSO3- and HOCl. The detection of HSO3- in actual food samples has been successfully achieved using QZB. Utilization of QZB-based test strip to semi-quantitatively detect HSO3- and HOCl in real-world water samples by the "naked-eye" colorimetry are then demonstrated. Simultaneously, the determination of HSO3- and HOCl in real-world water sample has been achieved by smartphone-based standard curves. Additionally, the applications of QZB for imaging HSO3- and HOCl in vivo are successfully demonstrated. Consequently, the successful development of QZB could be promising as an efficient tool for researching the role of HSO3-/HOCl in the regulation of redox homeostasis regulation in vivo and complex signal transduction and for future food safety evaluation.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Ácido Hipocloroso/química , Reproducibilidad de los Resultados , Agua
3.
Food Chem ; 427: 136701, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37423045

RESUMEN

We report the development of a red-emitting fluorescence probe (XDS) for hydrogen sulfide (H2S) detection in biosystems, real-world food samples, and application of this probe for monitoring of H2S production during food spoilage. The XDS probe is developed by coupling of coumarin derivative to rhodanic-CN through a H2S responsive CC bond. Remarkable fluorescence quenching of XDS is observed as a result of the response to H2S. Semi-quantitative detection of H2S in three real-world water and two beer samples and monitoring of H2S production during food spoilage in real-time by "naked-eye" and smartphone colorimetric analysis are then achieved using XDS as the probe. Moreover, XDS is low toxicity, allowing it being used for visualizing endogenous and exogenous H2S in vivo in a mouse model. It is expected that the successful development of XDS could provide an effective tool for investigating the roles of H2S in biomedical system and for future food safety evaluation.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Animales , Ratones , Humanos , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/análisis , Colorimetría/métodos , Espectrometría de Fluorescencia , Cerveza/análisis , Células HeLa
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122853, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209474

RESUMEN

Bisulfite (HSO3-) has been widely used as an antioxidant, enzyme inhibitor and antimicrobial agent in foodstuffs, pharmaceutical and beverages industries. It is also a signaling molecular in the cardiovascular and cerebrovascular systems. Nevertheless, a high level of HSO3- can cause allergic reactions and asthmatic attacks. Accordingly, the monitoring of HSO3- levels possesses momentous significance from the perspectives of biological technology and food security supervision. Herein, a near-infrared fluorescent probe LJ is rationally constructed for sensing HSO3-. The fluorescence quenching recognition mechanism was realized by the addition reaction of electron-deficient CC bond in probe LJ and HSO3-. Probe LJ revealed multifarious preponderances such as longer wavelength emission (710 nm), low cytotoxicity, larger Stokes shift (215 nm), better selectivity, higher sensitivity (72 nM) and short response time (50 s). Encouragingly, probe LJ can detect HSO3- in living zebrafish and mice in vivo by fluorescence imaging techniques. In the meantime, probe LJ was also successfully employed to semi-quantitatively detect HSO3- in real foodstuff samples and water samples by the "naked-eye" colorimetry without the help of any special instruments. More importantly, quantitative detection of HSO3- in practical food samples was achieved through a smartphone application software. Consequently, probe LJ is expected to provide an effective and convenient way for the detection and monitoring of HSO3- in organisms and for food safety detection, which has tremendous application potential.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Ratones , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Sulfitos/química , Imagen Óptica
5.
Anal Methods ; 14(44): 4537-4544, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36314283

RESUMEN

Nitric oxide (NO) is one of three major signaling molecules, which is involved in a large amount of physiological and pathological processes in biological systems. Furthermore, more and more evidence indicates that NO levels are closely associated with several aspects of human health. Accordingly, it is of great significance to develop a convenient and reliable detection method for NO in biological systems. In this work, a novel triphenylamine-embedded copper(II) complex (NZ-Cu2+) has been developed to be used as a fluorescence probe for the detection of NO in living animals. The proposed sensing mechanism of NZ-Cu2+ towards NO has been confirmed by high-resolution mass spectrometry, spectroscopic titration and density functional theory calculation. NO induced the conversion of paramagnetic Cu2+ to diamagnetic Cu+, which blocked the photoinduced electron transfer process of NZ-Cu2+, resulting in a remarkable enhancement of the emission spectra. The NZ-Cu2+ probe possesses several advantages including high selectivity, low detection limit (12.9 nM), long emission wavelength (640 nm), large Stokes shift (201 nm), fast response time (60 s) and low cytotoxicity. More importantly, NZ-Cu2+ has been successfully applied to detect NO in vivo by fluorescence imaging.


Asunto(s)
Cobre , Colorantes Fluorescentes , Animales , Humanos , Colorantes Fluorescentes/química , Cobre/análisis , Cobre/química , Óxido Nítrico , Aminas , Imagen Óptica
6.
RSC Adv ; 12(25): 15861-15869, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35733666

RESUMEN

Hypochlorous acid (HOCl) and sulfur dioxide derivatives (SO3 2-/HSO3 -) play critical roles in complex signal transduction and oxidation pathways. Therefore, it is meaningful and valuable to detect both HOCl and SO2 derivatives in biosystems by a fluorescence imaging assay. In this work, we developed a red-emitting fluorescent probe (DP) by the condensation of malononitrile and phenothiazine derivatives through a C[double bond, length as m-dash]C double bond. DP was designed with a donor-π-acceptor (D-π-A) structure, which enables absorption and emission in the long wavelength region. In the presence of HOCl, specific oxidation of the thioether of phenothiazine in DP to a sulfoxide derivative (DP[double bond, length as m-dash]O) occurs, resulting in a hypochromic shift (572 nm to 482 nm) of the absorption spectra and "OFF-ON" response of the maximum emission at 608 nm. After the activation of the C[double bond, length as m-dash]C double bond by oxidation, DP[double bond, length as m-dash]O reacts specifically with SO3 2-/HSO3 - via a 1,4-nucleophilic addition reaction leading to a decrease in the intensity of the absorption and emission spectra, which enabled the realization of sequential detection of HOCl and SO3 2-/HSO3 - by a single fluorescent probe. The detection limits of DP for HOCl and SO3 2-/HSO3 - were calculated to be 81.3 nM and 70.8 nM/65.1 nm, respectively. The results of fluorescence microscopic imaging indicated that DP shows potential for the detection of intracellular HOCl and SO3 2-/HSO3 -. Using adult zebrafish and nude mice as live animal models, DP was successfully used for the fluorescence imaging of HOCl and SO3 2-/HSO3 - in vivo.

7.
Methods ; 204: 47-54, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35447358

RESUMEN

Bisulfite (HSO3-) has been widely used as an important food additive in daily life. Furthermore, a normal amount of HSO3- plays a significant role in biological systems. However, excessive intake of HSO3- will lead to a variety of diseases. Therefore, it is of great significance to develop an efficient fluorescent probe that can be used for detection of HSO3- in biological systems and food samples. In this work, a near-infrared (NIR) emitted fluorescent probe (SZY) based on hemicyanine dye was successfully synthesized and applied to detect HSO3- in several food samples and live animals. The proposed nucleophilic addition sensing mechanism of SZY towards HSO3- has been confirmed by 1H NMR titration, high resolution mass spectrometry (HR-MS) and density functional theory (DFT) theoretical computation. The HSO3--induced nucleophilic reaction with α,ß-unsaturated CC binding of SZY results in the dramatic decline of the UV-vis absorption and remarkable quenching of the fluorescence emission. SZY features the advantages of near infrared emission (centered at 720 nm), high water solubility (in 98% aqueous solution), fast response time (50 s), large Stokes shift (244 nm) and low cytotoxicity. The probe SZY was successfully applied to image of HSO3- in live nude mouse and adult zebrafish. Semi-quantitatively analyzing the HSO3- level by "naked eye" in several food samples including canned fruit, white wine, white sugar and jasmine tea drinks has been realized by the colorimetric method.


Asunto(s)
Colorantes Fluorescentes , Vino , Animales , Colorimetría/métodos , Colorantes Fluorescentes/química , Células HeLa , Humanos , Ratones , Espectrometría de Fluorescencia/métodos , Vino/análisis , Pez Cebra/metabolismo
8.
Anal Sci ; 38(3): 505-514, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35359268

RESUMEN

In this work, a new fluorescence probe (DC) with a donor-π-acceptor (D-π-A) structure was designed and synthesized for the detection of three kinds of biothiols (Cys, Hcy and GSH) in live cells and organisms. DC displayed an intense red-emission centered at 625 nm. In the presence of biothiols, the nucleophilic addition reaction between the C=C double bond of DC and the sulfhydryl group (-SH) of biothiols occurred, resulting in obvious fluorescence quenching responses. DC exhibited high selectivity towards biothiols over other common bioactive species with low detection limits (0.26, 0.43, and 0.44 µM for Cys, Hcy and GSH, respectively). In addition, DC displayed a rapid response to biothiols within 4 min. The applications of DC in biothiols detection and imaging were then successfully demonstrated for the real-time monitoring of endogenous and exogenous biothiols in live cells and live animals.


Asunto(s)
Colorantes Fluorescentes , Compuestos de Sulfhidrilo , Animales , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo/química
9.
Analyst ; 146(24): 7528-7536, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34816828

RESUMEN

In this work, a phenothiazine-based fluorescent probe (PR) has been developed for the selective detection of hydrogen sulfide (H2S) in biosystems and monitoring H2S produced in the food spoilage process. The nucleophilic attack of H2S on the CC double bond of PRvia a Michael addition interdicted the ICT process to trigger 34-fold enhancement of the fluorescence emission. PR featured high selectivity and sensitivity (1.8 µM), low cytotoxicity and reliability at physiological pH. "Naked-eye" monitoring of H2S produced in the food spoilage process using PR was successfully accomplished. The preliminary fluorescence imaging studies showed that PR is suitable for the visualization of exogenous and endogenous H2S in living cells and live animals. Moreover, PR has been successfully applied to the visualization of H2S generation in an inflammation model. The results indicated that PR is an effective tool to monitor H2S production in the fields of biomedicine and food safety.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Animales , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Sulfuro de Hidrógeno/toxicidad , Fenotiazinas/toxicidad , Reproducibilidad de los Resultados
10.
RSC Adv ; 11(50): 31656-31662, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35496887

RESUMEN

The development of effective bioanalytical methods for the visualization of hypochlorous acid (HOCl) in situ in rheumatoid arthritis (RA) directly contributes to better understanding the roles of HOCl in this disease. In this work, a new quinoline-based fluorescence probe (HQ) has been developed for the detection and visualization of a HOCl-mediated inflammatory response in a RA model. HQ possesses a donor-π-acceptor (D-π-A) structure that was designed by conjugating p-hydroxybenzaldehyde (electron donor) and 1-ethyl-4-methylquinolinium iodide (electron acceptor) through a C[double bond, length as m-dash]C double bond. In the presence of HOCl, oxidation of phenol to benzoquinone led to the red-shift (93 nm) of the adsorption and intense quenching of the fluorescence emission. The proposed response reaction mechanism was verified by high performance liquid chromatography (HPLC) and high-resolution mass spectroscopy (HRMS) titration analysis. The remarkable color changes of the HQ solution from pale yellow to pink enabled the application of HQ-stained chromatography plates for the "naked-eye" detection of HOCl in real-world water samples. HQ featured high selectivity and sensitivity (6.5 nM), fast response time (<25 s) to HOCl, reliability at different pH (3.0 to 11.5) and low cytotoxicity. HQ's application in biological systems was then demonstrated by the monitoring of HOCl-mediated treatment response to RA. This work thus provided a new tool for the detection and imaging of HOCl in inflammatory disorders.

11.
Food Chem (Oxf) ; 2: 100027, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35415634

RESUMEN

Responsive small-molecule fluorescence probe specific for target analyte detection is an emerging technology for food safety and quality analysis. In this work, we report a new water soluble small-molecule fluorescence probe (PG) for the detection of hypochlorous acid (HOCl) in drinking water samples. Probe PG was developed by coupling of a glucosamine into 10-methyl-10H-phenothiazine fluorophore with a HOCl-responsive C=N bond. The thioether is another recognition site that can be oxidized to be sulfoxide in water. Due to the specific reactions triggered by HOCl, probe PG's absorption band is blue shifted from 388 to 340 nm, and fluorescence at 488 nm is more than 55-fold enhanced. Probe PG features high fluorescence stability in PBS buffer with varied pH, fast response and high selectivity to HOCl. The application of the probe PG for HOCl detection in real-world samples is demonstrated by HOCl detection in drinking water, including tap water, purified water, and spring water samples. The recoveries of this method for HOCl detection in drinking water are in the range of 99.17-102.3%. This work thus provides a new method for HOCl detection in drinking water with high precision and accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...