Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(9): e14516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354912

RESUMEN

The intricate mechanisms controlling plant diversity and community composition are cornerstone of ecological understanding. Yet, the role of mycorrhizal symbiosis in influencing community composition has often been underestimated. Here, we use extensive species survey data from 1315 grassland sites in China to elucidate the influence of mycorrhizal symbiosis on plant phylogenetic diversity and community assembly. We show that increasing mycorrhizal symbiotic potential leads to greater phylogenetic dispersion within plant communities. Mycorrhizal species predominantly influence deterministic processes, suggesting a role in niche-based community assembly. Conversely, non-mycorrhizal species exert a stronger influence on stochastic processes, highlighting the importance of random events in shaping community structure. These results underscore the crucial but often hidden role of mycorrhizal symbiosis in driving plant community diversity and assembly. This study provides valuable insights into the mechanisms shaping ecological communities and the way for more informed conservation that acknowledges the complex interplay between symbiosis and community dynamics.


Asunto(s)
Biodiversidad , Pradera , Micorrizas , Filogenia , Simbiosis , Micorrizas/fisiología , China , Plantas/microbiología
2.
Sci Total Environ ; : 176474, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341236

RESUMEN

Livestock removal (LR) is considered an effective strategy for recovering ecosystem functions in degraded grasslands. Carbon (C), nitrogen (N), and phosphorus (P), as well as their ratios in plants and microorganisms, act as key regulators of ecosystem stability and nutrient limitation during grassland succession. However, few studies have comprehensively evaluated plant and microbial nutrient limitations through C:N:P stoichiometry following LR over different durations. Here, our study explored the contents of C, N, P contents, and C:N, C:P and N:P ratios of green and senescent leaves, microbial biomass and extracellular enzymes after 33 years of LR on the Loess Plateau, China. The results showed that LR increased the C, N, and P contents of plant and microbial communities. LR (>26 years) enhanced C, N, P contents of green leaves by 364.7 %, 232.2 %, 134.6 %, and C, N, P contents of senescent leaves by 164.8 %, 230.8 %, 86.3 %, respectively. LR also increased plant C:P and N:P ratios and the P reabsorption efficiency, indicating that the plant communities shifted from N to P-limitation during grassland restoration. Compared with the grazing sites, LR26 increased C, N, P contents, C:P and N:P ratios of soil microbial biomass, whereas reduced soil N-acquiring enzyme activity and enzymatic N:P ratio, indicating that the microbial community experienced higher P limitation than that of the grazing sites. Plant and microbial communities showed strong plastic relationships with soil resource. Vegetation cover and productivity played strong roles in altering the plant and microbial C:N:P stoichiometry following LR. These findings indicate that long-term LR (>26 years) will exacerbate plant and microbial P limitation during grassland succession.

3.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1799-1806, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233408

RESUMEN

Exploring nutrient limitation in forest soil holds significant implications for forest tending and management. However, current research on nutrient limitation status of microorganisms in Robinia pseudoacacia plantations within the Loess Plateau remains insufficient. To investigate soil microbial nutrient limitation of R. pseu-doacacia plantations on the Loess Plateau, we selected R. pseudoacacia plantations with different afforestation time series (15, 25, 35, and 45 years) and a pile of barren slope cropland (control) in Yongshou County, Shaanxi Province as the research objects. We analyzed the contents of soil organic matter, total nitrogen, and total phosphorus, and the activities of ß-1,4-glucosidase (BG), cellobiose hydrolase (CBH), leucine aminopeptidase (LAP), ß-1,4-N-acetylglucoside (NAG) and phosphatase (AP). We analyzed the soil nutrient limitation by stoichiometry and enzyme metrology. The results showed a shift in soil pH from alkaline to acidic during vegetation restoration process, and that total phosphorus exhibited a gradual decrease over the course of 0 to 25 years. Soil orga-nic matter, total nitrogen and enzyme activities exhibited an increasing trend during the same time frame. However, between 25 and 45 years of age, soil total phosphorus, soil organic matter, total nitrogen, AP and LAP gradually declined while NAG, BG, and CBH initially increased and then decreased. Notably, the values of (BG+CBH)/(LAP+NAG), (BG+CBH)/AP and (LAP+NAG)/AP in R. pseudoacacia plantations were higher than the global average throughout the process of vegetation restoration. In the study area, the vector length was less than 1 and gradually increased, indicating that a progressive increase in microbial carbon limitation during the process of vegetation restoration. The vector angle exceeded 45° and exhibited an overall decreasing trend, suggesting that soil microorganisms were constrained by phosphorus (P) with a gradual deceleration of P limitation, without any nitrogen (N) limitation. The restoration of R. pseudoacacia plantation resulted in significant change in soil physical and chemical properties, while the time series of afforestation also influenced nutrient limitation of soil microorganisms.


Asunto(s)
Nitrógeno , Fósforo , Robinia , Microbiología del Suelo , Suelo , Robinia/crecimiento & desarrollo , Robinia/metabolismo , Suelo/química , Fósforo/metabolismo , Fósforo/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , China , Leucil Aminopeptidasa/metabolismo , Bosques , Nutrientes/análisis , Nutrientes/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Ecosistema
4.
J Environ Manage ; 368: 122140, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39137637

RESUMEN

Applying biochar to nitrogen (N)-fertilized soils is recognized as an effective technique for enhancing soil carbon (C) accumulation and improving agroecosystem sustainability. However, the impact of co-application of biochar and N fertilizer on soil C and N stocks, as well as their fractions, within the 0-60 cm soil profile remains unclear. This study examined the soil C and N fractions as well as stocks in soil profiles, and the primary influencing factors in wheat field with different rates of biochar (0, 20 and 40 t ha-1; B0, B1 and B2) and N application (0, 180 and 360 kg N ha-1; N0, N1 and N2). The results revealed that compared to B0N0 treatment, biochar plus N application increased soil organic carbon (SOC) and dissolved organic carbon (DOC), while N application alone decreased microbial biomass carbon (MBC). SOC in topsoil (0-10 cm) and DOC in subsoil (40-60 cm) were more susceptible to biochar and N application. The combined application of biochar and N enhanced soil N fractions, with NO3--N having the highest sensitivity than the other N fractions, whereas biochar application alone decreased topsoil inorganic N content. Biochar and N application significantly altered soil C stocks (4.33%-42.20%) and N stocks (-1.24%-20.91%) within the 0-60 cm soil layers, and belowground biomass and SOC were the main influencing factors, respectively. The combination of moderate biochar (42.35 t ha-1) and N (277.78 kg ha-1) application was the most beneficial for soil C accumulation in the 0-60 cm depth. These findings indicate the positive impacts of co-applying of biochar and N in agroecosystems on soil C and N accumulations, and highlight the importance of C and N stabilization in both topsoil and subsoil under management practice.


Asunto(s)
Carbono , Carbón Orgánico , Fertilizantes , Nitrógeno , Suelo , Triticum , Nitrógeno/análisis , Carbono/análisis , Suelo/química , Fertilizantes/análisis , Triticum/crecimiento & desarrollo , Carbón Orgánico/química , Agricultura/métodos
5.
Plant Physiol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39133896

RESUMEN

Hydrogen sulphide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2 modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant up-regulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.

6.
J Environ Manage ; 363: 121382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852416

RESUMEN

Vegetation restoration not only extensively reshapes spatial land use patterns but also profoundly affects the dynamics of runoff and sediment loss. However, the influence of vegetation restoration on runoff and sediment yield from a regional perspective are scarce. This study therefore focused on 85 sites within the "Grain for Green" Project (GGP) region on the Loess Plateau, to investigate the impacts of the GGP on soil erosion. The results revealed a notable reduction in sediment loss and runoff due to vegetation restoration. Since the inception of the GGP in 1999, approximately 4.1 × 106 ha of degraded lands have been converted into forestlands, shrublands, and grasslands, resulting in an average annual reduction of 1.4 × 109 m3 in runoff and a decrease of 3.6 × 108 t in annual sediment loss on the whole Loess Plateau, with the GGP contributing approximately 26.7% of the sediment reduction in the Yellow River basin. The reduced soil erosion has mainly been regulated by vegetation cover, soil properties (clay, silt, and sand), slope, and precipitation on the Loess Plateau. The insights gained offer valuable contributions to large-scale assessments of changes in soil erosion in response to vegetation reconstruction and enhance our understanding of the spatial configurations associated with soil erosion control measures.


Asunto(s)
Conservación de los Recursos Naturales , Erosión del Suelo , Suelo , Sedimentos Geológicos , China , Monitoreo del Ambiente , Bosques
7.
Sci Total Environ ; 928: 172635, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643876

RESUMEN

Vegetation restoration contributes to soil organic carbon (C; SOC) sequestration through the accumulation of plant and microbial residues, but the mechanisms underlying this microbially mediated process are not well resolved. To depict the dynamics of plant- and microbial-derived C in restored forest ecosystems, soil samples were collected from Robinia pseudoacacia plantations of different stand ages (15, 25, 35, 45 years old) established on degraded wheat fields. The results showed that the degree of lignin phenol oxidation decreased with increasing stand age (P < 0.05), and hemicellulose-degrading genes were detected at higher relative abundances than other functional gene categories, indicating selective preservation of recalcitrant lignin phenols. Despite both glucosamine (R2 = 0.61, P < 0.001) and muramic acid (R2 = 0.37, P < 0.001) contents trending upward over time, fungal residual C accounted for a greater proportion of SOC compared with bacterial residual C. Accordingly, fungal residual C, which exhibited a similar response pattern as total microbial residual C to vegetation restoration, was considered a major contributor to the SOC pool. These results provided evidence that long-term vegetation restoration enhanced SOC sequestration in R. pseudoacacia forest by promoting the preservation of plant-derived lignin phenols and concomitant microbial anabolism. Partial least squares-discriminant analysis identified two important ecological clusters (i.e., modules) in the fungal network that profoundly influenced lignin phenol oxidation (P < 0.05) and microbial residual C accumulation (P < 0.01). Among the dominant taxa in microbial networks, the bacterial phyla Proteobacteria and Acidobacteriota had potential to degrade recalcitrant C compounds (e.g., cellulose, lignin), whereas the fungal phylum Ascomycota could outcompete for labile C fractions (e.g., dissolved organic C). Findings of this study can enable a mechanistic understanding of SOC stability driven by microbial turnover in restored forest ecosystems.


Asunto(s)
Carbono , Bosques , Lignina , Microbiología del Suelo , Suelo , Suelo/química , Restauración y Remediación Ambiental/métodos , Fenoles/análisis , Robinia
8.
Environ Res ; 242: 117720, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37996008

RESUMEN

Vegetation restoration has significant impacts on ecosystems, and a comprehensive understanding of microbial environmental adaptability could facilitate coping with ecological challenges such as environmental change and biodiversity loss. Here, abundant and rare soil bacterial and fungal communities were characterized along a 15-45-year chronosequence of forest vegetation restoration in the Loess Plateau region. Phylogenetic-bin-based null model analysis (iCAMP), niche breadth index, and co-occurrence network analysis were used to assess microbial community assembly and environmental adaptation of a Robinia pseudoacacia plantation under long-term vegetation restoration. The drift process governed community assembly of abundant and rare soil fungi and bacteria. With increasing soil total phosphorus content, the relative importance of drift increased, while dispersal limitation and heterogeneous selection exhibited opposite trends for abundant and rare fungi. Rare soil fungal composition dissimilarities were dominated by species replacement processes. Abundant microbial taxa had higher ecological niche width and contribution to ecosystem multifunctionality than rare taxa. Node property values (e.g., degree and betweenness) of abundant microbial taxa were substantially higher than those of rare microbial taxa, indicating abundant species occupied a central position in the network. This study provides insights into the diversity and stability of microbial communities during vegetation restoration in Loess Plateau. The findings highlight that abundant soil fungi and bacteria have broad environmental adaptation and major implications for soil multifunctionality under long-term vegetation restoration.


Asunto(s)
Microbiota , Robinia , Ecosistema , Filogenia , Bosques , Bacterias , Suelo , Microbiología del Suelo , China
9.
Glob Chang Biol ; 29(24): 7051-7071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787740

RESUMEN

Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Nitrógeno/análisis , Biomasa , Plantas , Microbiología del Suelo
10.
Sci Total Environ ; 898: 165572, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454860

RESUMEN

Global change influences plant growth by affecting plant morphology and physiology. However, the effects of global change factors vary based on the climate gradient. Here, we established a global database of leaf traits from 192 experiments on elevated CO2 concentrations (eCO2), drought, N deposition, and warming. The results showed that the leaf mass per area (LMA) significantly increased under eCO2 and drought conditions but decreased with N deposition, whereas eCO2 levels and drought conditions reduced stomatal conductance and increased and decreased photosynthetic rates, respectively. Leaf dark respiration (Rd) increased in response to global change, excluding N deposition. Leaf N concentrations declined with eCO2 but increased with N deposition. Leaf area increased with eCO2, N deposition, and warming but decreased with drought. Leaf thickness increased with eCO2 but decreased with warming. eCO2 and N deposition enhanced plant water-use efficiency (WUE), eCO2 and warming increased photosynthetic N-use efficiency (PNUE), while N fertilization reduced PNUE significantly. eCO2 produced a positive relationship between WUE and PNUE, which were limited under drought but increased in areas with high humidity and high temperature. Trade-offs were observed between WUE and PNUE under drought, N deposition, and warming. These findings suggest that the effects of global change factors on plants can be altered by complex environmental changes; moreover, diverse plant water and nutrient strategy responses can be interpreted against the background of their functional traits.


Asunto(s)
Ecosistema , Hojas de la Planta , Hojas de la Planta/fisiología , Clima , Fotosíntesis/fisiología , Agua/fisiología , Plantas , Dióxido de Carbono/farmacología , Nitrógeno/farmacología
11.
Sci Total Environ ; 899: 165665, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478936

RESUMEN

Soil organic carbon (SOC) stabilization is vital for the mitigation of global climate change and retention of soil carbon stocks. However, there are knowledge gaps on how SOC sources and stabilization respond to vegetation restoration. Therefore, we investigated lignin phenol and amino sugar biomarkers, SOC physical fractions and chemical structure in one farmland and four stands of a Robinia pseudoacacia plantation. We observed that the content of SOC increased with afforestation, but the different biomarkers had different contributions to SOC. Compared to farmland, the contribution of lignin phenols to SOC decreased in the plantations, whereas there was no difference among the four stand ages, likely resulting from the balance between increasing lignin derivation input and increasing lignin degradation. Conversely, vegetation restoration increased the content of microbial necromass carbon (MNC) and the contribution of MNC to SOC, mainly because microbial residue decomposition was inhibited by decreasing the activity of leucine aminopeptidase, while microbial necromass preservation was promoted by adjusting soil variables (soil water content, clay, pH and total nitrogen). In addition, vegetation restoration increased the particulate organic carbon (POC), mineral-associated organic carbon (MAOC) pools and the O-alkyl C intensify. Overall, vegetation restoration affected SOC composition by regulating lignin phenols and microbial necromass and also altered SOC stabilization by increasing the physically stable MAOC pool during late afforestation. The results of this study suggest that more attention should be given to SOC sequestration and stability during late vegetation restoration.


Asunto(s)
Robinia , Suelo , Suelo/química , Carbono/análisis , Robinia/metabolismo , Lignina/metabolismo , Arcilla , Minerales/metabolismo , China
12.
Plant Cell Environ ; 46(8): 2523-2541, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303272

RESUMEN

Hydrogen sulfide (H2 S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2 S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2 S drives photosynthetic C fixation, utilisation, and accumulation in soybean-rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N-fixation performance were considerably improved owing to H2 S and rhizobia. Furthermore, H2 S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2 S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2 S and rhizobia on primary metabolism and C-N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2 S synergy with rhizobia inspired complex primary metabolism and C-N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.


Asunto(s)
Glycine max , Rhizobium , Glycine max/genética , Rhizobium/fisiología , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Simbiosis/genética
13.
Tree Physiol ; 43(7): 1081-1091, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-36912478

RESUMEN

Plant-soil-microbiota interactions mediated by root exudates regulate plant growth and drive rhizosphere microbial feedbacks. It remains unknown how root exudates affect rhizosphere microbiota and soil functions in the course of forest plantation restoration. The metabolic profiles of tree root exudates are expected to shift with stand age, leading to variation in rhizosphere microbiota structure, and in turn, potentially altering soil functions. To unravel the effects of root exudates, a multi-omics study was conducted using untargeted metabonomic profiling, high-throughput microbiome sequencing and functional gene array. The interactions among root exudates, rhizosphere microbiota and nutrient cycling-related functional genes were explored under 15- to 45-year-old Robinia pseudoacacia plantations in the Loess Plateau region of China. Root exudate metabolic profiles, rather than chemodiversity, markedly changed with an increase in stand age. A total of 138 age-related metabolites were extracted from a key module of root exudates. The relative contents of six biomarker metabolites, such as glucose-1-phosphate, gluconic acid and N-acetylneuraminic acid, increased distinctly over time. The biomarker taxa (16 classes) of rhizosphere microbiota varied in a time-sensitive manner, which played potential roles in nutrient cycling and plant health. Nitrospira, Alphaproteobacteria and Acidobacteria were enriched in the rhizosphere of older stands. Key root exudates influenced functional gene abundances in the rhizosphere via direct effects or indirectly through biomarker microbial taxa (e.g., Nitrososphaeria). Overall, root exudates and rhizosphere microbiota are essential for soil function maintenance in R. pseudoacacia plantation restoration.


Asunto(s)
Microbiota , Robinia , Rizosfera , Suelo/química , Exudados y Transudados , Microbiología del Suelo , Raíces de Plantas/microbiología
14.
Sci Total Environ ; 859(Pt 2): 160416, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427723

RESUMEN

Farmlands receive large amounts of nitrogen (N) from anthropogenic activities, which increase N2O emissions and promote crop productivity. Inhibitor or biochar applications have proven effective in reducing N2O emissions and promoting crop yields worldwide. However, a direct comparison of the response of N2O emissions and crop yields to inhibitor and biochar applications has not been performed. Here, we conducted a meta-analysis of 787 datasets from different locations worldwide to investigate the response of N2O emissions and crop yields to inhibitor or biochar applications for different climate factors and experimental conditions and determine the key influencing factors. We found that inhibitor applications (37.4 %) resulted in larger N2O emission reductions than biochar applications (20.2 %), but there was no difference in the crop yield improvement (5.8 % and 5.4 %, respectively). Nitrification inhibitor (NI) applications reduced N2O emissions by 40.8 %, a larger reduction than that of urease inhibitor (UI) applications (24.3 %) and the combination of NI and UI applications (36.4 %); 3,4-dimethylpyrazole succinic (DMPSA) was the most effective NI in reducing N2O emissions (50.7 %). We also found that NI applications were more effective in reducing N2O emissions than biochar applications in different climates and experimental conditions (N source, N rate, cropland type, and soil texture). In addition, the N rate was the most important factor impacting N2O emissions and crop yields when inhibitors were applied, whereas the experimental duration had the largest influence on N2O emissions under biochar applications. Moreover, soil factors were also related to N2O emissions under biochar applications or inhibitor applications. Our findings indicate that inhibitors are more effective in reducing N2O emissions than biochar worldwide.


Asunto(s)
Fertilizantes , Óxido Nitroso , Fertilizantes/análisis , Óxido Nitroso/análisis , Agricultura/métodos , Carbón Orgánico , Suelo
15.
Imeta ; 2(4): e142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38868232

RESUMEN

Conceptual diagram for the labile organic carbon (OC) fractions mediating microbial assembly processes during long-term vegetation succession.

16.
Front Plant Sci ; 13: 881282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665164

RESUMEN

Water use efficiency (WUE) plays important role in understanding the interaction between carbon and water cycles in the plant-soil-atmosphere system. However, little is known regarding the impact of altered precipitation on plant WUE in arid and semi-arid regions. The study examined the effects of altered precipitation [i.e., ambient precipitation (100% of natural precipitation), decreased precipitation (DP, -50%) and increased precipitation (IP, +50%)] on the WUE of grass species (Stipa grandis and Stipa bungeana) and forb species (Artemisia gmelinii) in a temperate grassland. The results found that WUE was significantly affected by growth stages, precipitation and plant species. DP increased the WUE of S. grandis and S. bungeana generally, but IP decreased WUE especially in A. gmelinii. And the grasses had the higher WUE than forbs. For different growth stages, the WUE in the initial growth stage was lower than that in the middle and late growth stages. Soil temperature, available nutrients (i.e., NO3 -, NH4 +, and AP) and microorganisms under the altered precipitations were the main factors affecting plant WUE. These findings highlighted that the grasses have higher WUE than forbs, which can be given priority to vegetation restoration in arid and semi-arid areas.

17.
Ying Yong Sheng Tai Xue Bao ; 33(4): 949-956, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35543046

RESUMEN

We explored the effects of C:N ratio in root exudates of Robinia pseudoacacia plantations on soil nutrient cycling and microbial activity on the Loess Plateau. We collected in-situ soil from the R. pseudoacacia plantations with essentially identical habitat conditions and growing time of 15, 25, 35, and 45 years. By adding root exudates with different C:N ratios (N only, C:N=10, C:N=50, C:N=100, C only) to the soil and using deionized water as a control, we analyzed the effects of C:N ratio of root exudates on the physicochemical properties of elements such as carbon, nitrogen and phosphorus, soil pH, and soil respiration. The results showed that: 1) Organic carbon content was positively correlated with the C:N ratio of root exudates. Soil organic carbon (SOC) decomposition was faster when root exudates C:N=10. Higher C:N ratio of root exudates (C:N=100) could inhibit SOC decomposition, but only C addition had no significant effect on SOC. 2) Different root exudate C:N produced no significant influence on the total nitrogen. The addition of carbon promoted microbial uptake of ammonium nitrogen, while the addition of nitrogen promoted the nitrification of ammonium nitrogen. As the C:N ratio of root exudates increased, soil ammonium nitrogen content decreased. 3) The addition of nitrogen would reduce soil pH and increase soil total phosphorus content. 4) Soil respiration of R. pseudoacacia plantations was positively correlated with the C:N ratio of root exudates. With the increases of C:N ratio, the promoting effect of root exudates on soil respiration at 25 and 35 years R. pseudoacacia plantations was stronger. In conclusion, higher C:N ratio of root exudates will significantly promote the effect on soil respiration of R. pseudoacacia plantations. Our results improved the understan-ding of the root-soil-microbial interactions in forests.


Asunto(s)
Compuestos de Amonio , Robinia , Carbono/análisis , China , Exudados y Transudados/química , Nitrógeno/análisis , Fósforo , Respiración , Suelo/química
18.
Sci Total Environ ; 827: 154351, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35259374

RESUMEN

Increased atmospheric greenhouse gas (GHG) concentrations resulting from human activities lead to climate change, including global warming and changes of precipitation patterns worldwide, which in turn would have profound effects on soil GHG emissions. Nonetheless, the impact of the combination of warming and precipitation changes on all three major biogenic GHGs (CO2, CH4 and N2O) has not been synthesized, to build a global synthesis. In this study, we conducted a global meta-analysis concerning the effects of warming and precipitation changes and their interactions on soil GHG fluxes and explored the potential factors by synthesizing 39 published studies worldwide. Across all studies, combination of warming and increased precipitation showed more significant effect on CO2 emissions (24.0%) than the individual effect of warming (8.6%) and increased precipitation (20.8%). Additionally, warming increased N2O emissions (28.3%), and decreased precipitation reduced CO2 (-8.5%) and N2O (-7.1%) emissions, while the combination of warming and decreased precipitation also showed negative effects on CO2 (-7.6%) and N2O (-14.6%) emissions. The interactive effects of warming and precipitation changes on CO2 emissions were usually additive, whereas CO2 and N2O emissions were dominated by synergistic effects under warming and decreased precipitation. Moreover, climate, biome, duration, and season of manipulations also affected soil GHG fluxes as well. Furthermore, we also found the threshold effects of changes in soil temperature and moisture on CO2 and N2O emissions under warming and precipitation changes. The findings indicate that both warming and precipitation changes substantially affect GHG emissions and highlight the urgent need to study the effect of the combination of warming and precipitation changes on C and N cycling under ongoing climate change.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Humanos , Metano/análisis , Óxido Nitroso/análisis , Suelo
19.
Sci Total Environ ; 817: 152991, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026259

RESUMEN

Increasing environmental stress strongly affects soil microbial communities, but the responses of the microbial assembly and the functional potential of the dominant microbial community in the presence of environmental stress in drylands are still poorly understood. Here, we undertook a broad appraisal of the abundance, diversity, similarity, community assembly, network properties and functions of soil microbiomes in 82 dryland grasslands along environmental gradients. We found that the bacterial and fungal diversity and community similarity showed different sensitivities to environmental stress (decreased mean annual precipitation (MAP) and soil nutrient levels and increased soil pH), and MAP was the most important factor influencing microbial community patterns. In addition, the dominant subcommunity of both bacteria and fungi was more sensitive to environmental stress than the nondominant subcommunity. Although increasing environmental stress decreased microbial phylogenetic clustering, it had no effects on the stochastic and deterministic assembly process balance. Moreover, we identified 101 bacterial and 34 fungal environmental stress-discriminatory taxa that were sensitive to environmental stress, and these bacterial markers showed a high correlation with the abundance of carbon (C) and nitrogen (N) cycling-related genes, whereas the taxa classified as connectors in the network were mainly correlated with C degradation genes. Our study shows that the different responses of bacteria and fungi to environmental stress bring challenges to predicting microbial function, but a relatively small number of taxa play an important role in driving C and N cycling-related functional genes, indicating that identifying an organism's phenotypic characteristics or traits of key taxa may improve our knowledge of the microbial response to ongoing global changes.


Asunto(s)
Pradera , Microbiología del Suelo , Hongos/genética , Filogenia , Suelo/química
20.
J Environ Manage ; 302(Pt A): 113985, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700089

RESUMEN

Soil degradation is significantly increased driven by soil nutrient loss and soil erodibility, thus, hampering the sustainable development of the ecological environment and agricultural production. Vegetation restoration has been widely adopted to prevent soil degradation given its role in improving soil nutrients and soil erodibility. However, it is unclear which vegetation type has the best improving capacity from soil nutrient and soil erodibility perspectives. This study selected three vegetation restoration types of grasslands (GL), shrublands (SL), and forestlands (FL) along the five slope positions (i.e., top, upper, middle, lower, and foot slope), to investigate the effects of vegetation restoration types on soil nutrients and soil erodibility. All vegetation restoration types were restored for 20 years from croplands (CL). We used comprehensive soil nutrient index (CSNI) and comprehensive soil erodibility index (CSEI) formed by a weighted summation method to reflect the effect of vegetation restoration on the improving capacity of soil nutrient and erodibility. The results showed the vegetation types with the highest comprehensive soil quality index (CSQI) at the top, upper, middle, lower and foot slope were FL (1.92), FL (1.98), SL (2.15), FL (2.37) and GL (3.93), respectively. When only one vegetation type was considered on the entire slope, SL (0.59) and FL (0.59) had the highest CSNI, the SL had the lowest CSEI (0.34) and the highest CSQI (1.89). The CSNI was mainly influenced by soil structure stability index (SSSI), sand content, silt + clay particles, and CSEI was controlled by soil organic matter (SOM), macroaggregates and microaggregates. Moreover, the CSQI was influenced by pH, silt and clay content, and biome coverage (BC). The study suggested the SL were advised as the best vegetation restoration type on the whole slope from improving soil nutrients and soil erodibility.


Asunto(s)
Bosques , Suelo , Agricultura , China , Ecosistema , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA