Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-3, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092514

RESUMEN

Polyphenols, abundant in plant-based foods like fruits, vegetables, tea, coffee, wine, and chocolate, offer significant health benefits. Known for their potent antioxidant properties, they combat oxidative stress by neutralising free radicals, crucial in preventing chronic noncommunicable diseases (NCDs) such as cancer, cardiovascular issues, obesity, and diabetes. Polyphenols also exhibit anti-inflammatory effects, modulating gene expression and reducing inflammation associated with NCDs. Their anticancer activities involve inhibiting cancer cell growth and promoting apoptosis through various pathways. They enhance cardiovascular health by improving endothelial function, lowering blood pressure, and inhibiting atherosclerosis. Additionally, polyphenols improve metabolic health by enhancing insulin sensitivity and regulating glucose metabolism, aiding in diabetes and obesity management. These bioactive compounds interact with cellular pathways and gut microbiota, highlighting their multifaceted mechanisms. Integrating polyphenol-rich foods into diets could significantly improve health outcomes and alleviate NCD burdens, advocating for their inclusion in public health strategies and further research to optimise their potential.

4.
Nat Prod Res ; : 1-2, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034482
11.
Nat Prod Res ; : 1-3, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38919063
13.
Med Oncol ; 41(5): 115, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622289

RESUMEN

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.


Asunto(s)
Bacopa , Carcinoma Ductal , Neoplasias , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Histonas , Citocinas
14.
Clin Immunol ; 263: 110204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582251

RESUMEN

BACKGROUND: T-ALL is an aggressive hematological tumor that develops as the result of a multi-step oncogenic process which causes expansion of hematopoietic progenitors that are primed for T cell development to undergo malignant transformation and growth. Even though first-line therapy has a significant response rate, 40% of adult patients and 20% of pediatric patients will relapse. Therefore, there is an unmet need for treatment for relapsed/refractory T-ALL to develop potential targeted therapies. METHODS: Pediatric T-ALL patient derived T cells were grown under either nonskewingTh0 or Th1-skewing conditions to further process for ChIP-qPCR, RDIP-qPCR and other RT-PCR assays. Endogenous WASp was knocked out using CRISPR-Cas9 and was confirmed using flow cytometry and western blotting. LC-MS/MS was performed to find out proteomic dataset of WASp-interactors generated from Th1-skewed, human primary Th-cells. DNA-damage was assessed by immunofluorescence confocal-imaging and single-cell gel electrophoresis (comet assay). Overexpression of RNaseH1 was also done to restore normal Th1-transcription in WASp-deficient Th1-skewed cells. RESULTS: We discovered that nuclear-WASp is required for suppressing R-loop production (RNA/DNA-hybrids) at Th1-network genes by ribonucleaseH2 (RNH2) and topoisomerase1. Nuclear-WASp is associated with the factors involved in preventing and dissolving R-loops in Th1 cells. In nuclear- WASp-reduced malignant Th1-cells, R-loops accumulate in vivo and are processed into DNA-breaks by transcription-coupled-nucleotide-excision repair (TC-NER). Several epigenetic modifications were also found to be involved at Th1 gene locus which are responsible for active/repressive marks of particular genes. By demonstrating WASp as a physiologic regulator of programmed versus unprogrammed R-loops, we suggest that the transcriptional role of WASp in vivo extends also to prevent transcription-linked DNA damage during malignancy and through modification of epigenetic dysregulations. CONCLUSION: Our findings present a provocative possibility of resetting R-loops as a therapeutic intervention to correct both immune deficiency and malignancy in T-cell acute lymphoblastic leukemia patients and a novel role of WASp in the epigenetic regulation of T helper cell differentiation in T-ALL patients, anticipating WASp's requirement for the suppression of T-ALL progression.


Asunto(s)
Reparación por Escisión , Inestabilidad Genómica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Células TH1 , Proteína del Síndrome de Wiskott-Aldrich , Niño , Humanos , Daño del ADN , Inestabilidad Genómica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Células TH1/inmunología , Transcripción Genética , Proteína del Síndrome de Wiskott-Aldrich/genética
15.
Pathol Res Pract ; 253: 155004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086291

RESUMEN

BACKGROUND: NSCLC is one of the leading causes of death and is often diagnosed at late stages with no alternative therapeutic approach. DCs are professional antigen-presenting cells and DC-based immunotherapy has been under the spotlight for its anti-cancer properties. Epigenetic modifications including DNA methylation and histone modification in DCs play a crucial role in regulating their functions such as maturation and activation,innate immune responses, T cell priming, antigen presentation, and cytokine production. In the current study, we investigated the anti-cancer properties of Doxorubicin at a noncytotoxic concentration that could be extrapolated as an epigenetic regulator for DC maturation to elicit anti-tumor activity. METHODOLOGIES: PBMCs from normal and NSCLC blood samples were isolated and treated with growth factors. DCs were matured with low dose Doxorubicin and the DC maturation markers were checked by using flow-cytometry. Further, ELISA was performed and low dose Doxorubicin-induced DCs were pulsed with LCA (Lung Cancer Antigen) and primed with CD4 +T helper (Th) cells for cytotoxicity assessment. Further, epigenetic markers of T: DC conjugation were immunofluorescently visualized under a microscope. ChIP-qPCR and Invitro assays such as histone methylation, DNA methylation, and m6A methylation were performed to study the epigenetic changes under low dose Dox treatment. IL-12 neutralization assay was performed to check for the IL-12 dependency of DCs and their effect under Dox at low dose treatment. This was further followed by a Western Blotting analysis for histone and non-histone proteins. RESULTS: Low dose Doxorubicin induces epigenetic changes in DCs to elicit an anti-tumor response in NSCLC through the generation of CTLs with a concomitant increase in the extracellular secretions of anti-inflammatory cytokines. We also found that low dosage of Doxorubicin matured DCs when pulsed with LCA and primed with CD4 +T helper cells, secrete IFN-γ which is important in orchestrating adaptive immunity by activating CD8 + cytotoxic T-lymphocytes. Also, the secretions of IL-12 help us infer that protective immunity is also induced via Th1 response which triggered selectively the translocation of PKCθ to immunological synapse in between DC and Th. Further, methylation and acetylation markers H3K4me3 and H3K14Ac respectively upregulated whereas levels of STAT5, NFkB, NOTCH1, and DNAPKcs were downregulated. DNA and RNA methylation assays then lead to confirmations about the epigenetic changes caused by low dose Dox treatment. DNA methylation was reduced which resulted in the activation of tumor suppressor gene p53 and Th1-associated transcription factor TBX21. On the other hand, both absolute and relative RNA methylation quantification increased in the presence of Dox at a low dose. CONCLUSION: From this study, we understand that non-cytotoxic concentration of Doxorubicin increases the Ag-presenting ability of DCs via an IL-12-dependent mechanism and causes epigenetic modifications in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Epigénesis Genética , Células Dendríticas , Citocinas/metabolismo , Interleucina-12/metabolismo , Activación de Linfocitos , Doxorrubicina/farmacología , Doxorrubicina/metabolismo
16.
Pathol Res Pract ; 253: 155026, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118219

RESUMEN

As patients continue to suffer from lymphoproliferative and myeloproliferative diseases known as haematopoietic malignancies can affect the bone marrow, blood, lymph nodes, and lymphatic and non-lymphatic organs. Despite advances in the current treatment, there is still a significant challenge for physicians to improve the therapy of HMs. WASp is an important regulator of actin polymerization and the involvement of WASp in transcription is thought to be linked to the DNA damage response and repair. In some studies, severe immunodeficiency and lymphoid malignancy are caused by WASp mutations or the absence of WASp and these mutations in WAS can alter the function and/or expression of the intracellular protein. Loss-of-function and Gain-of-function mutations in WASp have an impact on cancer malignancies' incidence and onset. Recent studies suggest that depending on the clinical or experimental situation, WASPs and WAVEs can operate as a suppressor or enhancers for cancer malignancy. These dual functions of WASPs and WAVEs in cancer likely arose from their multifaceted role in cells that could be targeted for anticancer drug development. The significant role and their association of WASp in Chronic myeloid leukaemia, Juvenile myelomonocytic leukaemia and T-cell lymphoma is discussed. In this review, we described the structure and function of WASp and its family mechanism, analysing major regulatory effectors and summarising the clinical relevance and drugs that specifically target WASp in disease treatment in various hematopoietic malignancies by different approaches.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Síndrome de Wiskott-Aldrich , Humanos , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/terapia , Neoplasias Hematológicas/genética , Biología Molecular , Actinas/metabolismo
17.
Med Oncol ; 41(1): 28, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38146020

RESUMEN

Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer which is the deadliest type of cancer for both men and women. Previous studies already showed that cell-intrinsic loss of WASp causes B cell tolerance and WASp deficiency in T helper (TH) cells is linked to negative effects on cytokine gene transcription necessary for TH1 differentiation. In the current study, we investigated the molecular mechanisms involved in WASp-mediated epigenetic regulation of B cell differentiation during NSCLC. Our ChIP-qPCR data suggest the less percentage enrichment of the B cell differentiating factors (Ikaros, Pax5, PU.1, BATF) and WASp across the WAS gene in the B cells of NSCLC patients in comparison with normal healthy donors and overexpression of WASp showed the reverse effects. WASp-depleted B cells while co-culturing with respective PBMCs isolated from normal healthy donors and NSCLC patients, we observed upregulation of TH2-, TH17-, and Treg-specific cytokines (IL4, ILI7A, IL10) & transcription factors (GATA3, RORC, FOXP3) and downregulation of TH1-specific cytokine (IFNγ) & transcription factor (TBX21). Our study showed that the overexpression of WASp resulted into upregulation of B cell differentiating factors, tumor suppressor protein (p53), histone methylation marker (H3K4me3) with concomitant downregulation of tumor-promoting factors (Notch 1, ß-Catenin, DNAPKcs) and histone deacetylation marker (HDAC2) and increase in percentage cytotoxicity of NSCLC-specific cells (A549). Successful overexpression of WASp not only helps in epigenetic regulation of B cell differentiation but also supports tumor suppression in NSCLC. Thus, WASp can be targeted for therapeutic intervention of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína del Síndrome de Wiskott-Aldrich , Femenino , Humanos , Masculino , Carcinoma de Pulmón de Células no Pequeñas/genética , Diferenciación Celular/genética , Citocinas/metabolismo , Epigénesis Genética , Histonas/metabolismo , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Linfocitos B/metabolismo
18.
Mol Biol Rep ; 50(12): 10383-10398, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840067

RESUMEN

A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.


Asunto(s)
Factor de Unión a CCCTC , Epigénesis Genética , Neoplasias , Humanos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Neoplasias/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Clin Exp Med ; 23(8): 4323-4339, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37775649

RESUMEN

Signal transducers and activators of transcription or STAT are proteins that consist of various transcription factors that are responsible for activating genes regarding cell proliferation, differentiation, and apoptosis. They commonly activate several cytokine, growth, or hormone factors via the JAK-STAT signaling pathway by tyrosine phosphorylation which are responsible for giving rise to numerous immune responses. Mutations within the Janus-Kinases (JAKs) or the STATs can set off the commencement of various malfunctions of the immune system of the body; carcinogenesis being an inevitable outcome. STATs are known to act as both oncogenes and tumor suppressor genes which makes it a hot topic of investigation. Various STATs related mechanisms are currently being investigated to analyze its potential of serving as a therapeutic base for numerous immune diseases and cancer; a deeper understanding of the molecular mechanisms involved in the signaling pathways can contribute to the same. This review will throw light upon each STAT member in causing cancer malignancies by affecting subsequent signaling pathways and its genetic and epigenetic associations as well as various inhibitors that could be used to target these pathways thereby devising new treatment options. The review will also focus upon the therapeutic advances made in cancers that most commonly affect people and discuss how STAT genes are identified as prognostic markers.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas , Humanos , Proteínas Tirosina Quinasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas de Unión al ADN , Pronóstico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética
20.
Curr Res Immunol ; 4: 100068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692091

RESUMEN

The immune system has a variety of potential effects on a tumor microenvironment and the course of chemotherapy may vary according to that. Anticancer treatments can encourage the release of unwanted signals from senescent tumor cells or the removal of immune-suppressive cells, which can lead to immune system activation. Hence, by inducing an immunological response and conversely making cancer cells more vulnerable to immune attack, chemotherapeutic agents can destroy cancer cells. Furthermore, chemotherapy can activate anticancer immune effectors directly or indirectly by thwarting immunosuppressive pathways. Therefore, in this review, we discuss how chemotherapeutic agents take part in immunomodulation and the molecular mechanisms underlying them. We also focus on the importance of carefully addressing the conflicting effects of chemotherapy on immune responses when developing successful combination treatments based on chemotherapy and immune modulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA