Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Polym Sci A Polym Chem ; 57(3): 268-273, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31011240

RESUMEN

A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.

2.
Angew Chem Int Ed Engl ; 57(17): 4559-4564, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29441657

RESUMEN

Synthetic polymers have shown promise in combating multidrug-resistant bacteria. However, the biological effects of sequence control in synthetic antimicrobial polymers are currently not well understood. As such, we investigate the antimicrobial effects of monomer distribution within linear high-order quasi-block copolymers consisting of aminoethyl, phenylethyl, and hydroxyethyl acrylamides made in a one-pot synthesis approach via photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerisation (PET-RAFT). Through different combinations of monomer/polymer block order, antimicrobial and haemolytic activities are tuneable in a manner comparable to antimicrobial peptides.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/efectos de los fármacos , Polímeros/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polímeros/síntesis química , Polímeros/química , Relación Estructura-Actividad
3.
Chem Commun (Camb) ; 53(93): 12560-12563, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29115320

RESUMEN

We investigated the use of crude chlorophyll extracts to catalyze photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under red light irradiation. We discovered that Chl a degrades under visible light in the presence of air, which can eliminate the need for catalyst removal after polymerization.

4.
Macromol Rapid Commun ; 38(13)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28556363

RESUMEN

Recently, visible-light-regulated polymerization has been gaining popularity, as it opens a range of new opportunities for the synthesis of functional polymers and materials. Here, the most recent developments in this field are summarized, which is the use of photocatalysts and catalyst-free approaches to mediate polymerization upon photoexcitation. These catalysts can transfer an electron or energy to activate an initiator. The recent achievements in light-regulated atom-transfer radical polymerization, reversible addition-fragmentation chain-transfer polymerization, ring-opening metathesis polymerization, cobalt-mediated radical polymerization, iodine-mediated radical polymerization, and living cationic polymerization are reviewed. Recent development in these fields have solved important challenges in polymer chemistry, such as the development of oxygen-tolerant polymerization, polymerization mediated by near-infrared, metal-free polymerization, and spatial-, temporal-, and sequence-controlled polymerization. Some applications of these techniques will be discussed, such as adapting the current photocatalytic systems to synthesize heterogeneous photocatalysts that act as recyclable photocatalysts and novel light-mediated approaches for surface functionalization of hybrid materials and living cells. Finally, the existing challenges in polymer chemistry that could be overcome by further development of light-mediated polymerization techniques are highlighted along with the future directions of this field.


Asunto(s)
Electrones , Transferencia de Energía , Fotoquímica/tendencias , Polimerizacion , Catálisis , Luz , Polímeros/química
5.
ACS Cent Sci ; 3(2): 95-96, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28280773
6.
Angew Chem Int Ed Engl ; 56(29): 8376-8383, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-27925363

RESUMEN

Uniform synthetic polymers with precisely defined molar mass and monomer sequence (primary structure) have many potential high-value applications. However, a robust and versatile synthetic strategy for these materials remains one of the great challenges in polymer synthesis. Herein we describe proof-of-principle experiments for a modular strategy to produce discrete oligomers by a visible-light-mediated radical chain process. We utilize the high selectivity provided by photo-induced electron/energy transfer (PET) activation to develop efficient single unit monomer insertion (SUMI) into reversible addition-fragmentation chain-transfer (RAFT) agents. A variety of discrete oligomers (single unit species, dimers, and, for the first time, trimers) have been synthesized by sequential SUMI in very high yield under mild reaction conditions. The trimers were used as building blocks for the construction of uniform hexamers and graft copolymers with precisely defined branches.

7.
Chem Soc Rev ; 45(22): 6165-6212, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819094

RESUMEN

This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.

8.
Chem Rev ; 116(12): 6743-836, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27299693

RESUMEN

Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.


Asunto(s)
Sustancias Macromoleculares/química , Polímeros/química , Catálisis , Ciclización , Polimerizacion , Estereoisomerismo
9.
Science ; 352(6289): 1053-4, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230364
10.
J Am Chem Soc ; 138(9): 3094-106, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26914442

RESUMEN

Here, we exploit the selectivity of photoactivation of thiocarbonylthio compounds to implement two distinct organic and polymer synthetic methodologies: (1) a single unit monomer insertion (SUMI) reaction and (2) selective, controlled radical polymerization via a visible-light-mediated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) process. In the first method, precise single unit monomer insertion into a dithiobenzoate with a high reaction yield (>97%) is reported using an organic photoredox catalyst, pheophorbide a (PheoA), under red light irradiation (λmax = 635 nm, 0.4 mW/cm(2)). The exceptional selectivity of PheoA toward dithiobenzoate was utilized in combination with another catalyst, zinc tetraphenylporphine (ZnTPP), for the preparation of a complex macromolecular architecture. PheoA was first employed to selectively activate a dithiobenzoate, 4-cyanopentanoic acid dithiobenzoate, for the polymerization of a methacrylate backbone under red light irradiation. Subsequently, metalloporphyrin ZnTPP was utilized to selectively activate pendant trithiocarbonate moieties for the polymerization of acrylates under green light (λmax = 530 nm, 0.6 mW/cm(2)) to yield well-defined graft co-polymers.

11.
Angew Chem Int Ed Engl ; 55(3): 1036-40, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26633583

RESUMEN

Photoregulated polymerizations are typically conducted using high-energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near-infrared (NIR) and far-red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Well-defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far-red (λ=780 nm) irradiation with excellent control over the molecular weight (M(n)/M(w)<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.


Asunto(s)
Bacterioclorofila A/química , Rayos Infrarrojos , Luz , Polimerizacion , Catálisis
13.
J Am Chem Soc ; 137(31): 9988-99, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26171943

RESUMEN

Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.


Asunto(s)
Acrilamidas/química , Acrilamidas/síntesis química , Procesos Fotoquímicos , Polimerizacion , Técnicas de Química Sintética , Dimetilsulfóxido/química , Radicales Libres/química , Cinética , Ácidos de Lewis/química , Luz , Estereoisomerismo
14.
J Am Chem Soc ; 137(28): 9174-85, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26167724

RESUMEN

The use of metalloporphyrins has been gaining popularity particularly in the area of medicine concerning sensitizers for the treatment of cancer and dermatological diseases through photodynamic therapy (PDT), and advanced materials for engineering molecular antenna for harvesting solar energy. In line with the myriad functions of metalloporphyrins, we investigated their capability for photoinduced living polymerization under visible light irradiation over a broad range of wavelengths. We discovered that zinc porphyrins (i.e., zinc tetraphenylporphine (ZnTPP)) were able to selectively activate photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of trithiocarbonate compounds for the polymerization of styrene, (meth)acrylates and (meth)acrylamides under a broad range of wavelengths (from 435 to 655 nm). Interestingly, other thiocarbonylthio compounds (dithiobenzoate, dithiocarbamate and xanthate) were not effectively activated in the presence of ZnTPP. This selectivity was likely attributed to a specific interaction between ZnTPP and trithiocarbonates, suggesting novel recognition at the molecular level. This interaction between the photoredox catalyst and trithiocarbonate group confers specific properties to this polymerization, such as oxygen tolerance, enabling living radical polymerization in the presence of air and also ability to manipulate the polymerization rates (kp(app) from 1.2-2.6 × 10(-2) min(-1)) by varying the visible wavelengths.


Asunto(s)
Acrilamidas/química , Metaloporfirinas/química , Metacrilatos/química , Polimerizacion/efectos de la radiación , Estireno/química , Tionas/química , Catálisis , Luz , Oxidación-Reducción
15.
Chem Sci ; 6(2): 1341-1349, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29560221

RESUMEN

Efficient photoredox catalysts containing transition metals, such as iridium and ruthenium, to initiate organic reactions and polymerization under visible light have recently emerged. However, these catalysts are composed of rare metals, which limit their applications. In this study, we report an efficient photoinduced living radical polymerization process that involves the use of chlorophyll as the photoredox biocatalyst. We demonstrate that chlorophyll a (the most abundant chlorophyll in plants) can activate a photoinduced electron transfer (PET) process that initiates a reversible addition-fragmentation chain transfer (RAFT) polymerization under blue and red LED light (λmax = 461 and 635 nm, respectively). This process controls a wide range of functional and non-functional monomers, and offers excellent control over molecular weights and polydispersities. The end group fidelity was demonstrated by NMR, UV-vis spectroscopy, and successful chain extensions for the preparation of diblock copolymers.

16.
ACS Macro Lett ; 4(9): 926-932, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35596459

RESUMEN

In this study, we designed and synthesized novel organic single electron donor-acceptor molecules containing a free base porphyrin and a thiocarbonylthio group. The porphyrin acts as a light-harvesting antenna and donates an excited electron upon light irradiation to the electron-accepting thiocarbonylthio group. The excited electronic state of the donor-acceptor generates a radical from the thiocarbonylthio compound to activate a living radical polymerization in the presence of monomers. Thus, these donor-acceptor systems play the roles of highly efficient photoredox catalysts and radical initiators. The presence of both donor and acceptor in a single molecule enhanced the electron transfer efficiency in comparison to the donor/acceptor mixture and consequently greatly increased polymerization rates of vinyl monomers under visible light irradiation. The polymerizations mediated by these electron donor-acceptor photoredox catalysts were investigated under green (λmax = 530 nm, 0.7 mW/cm2) and red (λmax = 635 nm, 0.7 mW/cm2) lights, which exhibited great control over molecular weights, molecular weight distributions, and end-group functionalities.

17.
Biochemistry ; 54(3): 734-43, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25536850

RESUMEN

For the class A ß-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6ß position by a CH2OH group (6ß-(hydroxymethyl)penicillanic acid). The 6ß substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a ß-aminoacrylate) in 1 h for sulbactam and in 4 h for 6ß-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6ß-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6ß-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6ß-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.


Asunto(s)
Iminas/metabolismo , Sulbactam/análogos & derivados , beta-Lactamasas/metabolismo , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Distribución Normal , Soluciones , Espectrometría Raman , Sulbactam/química , Sulbactam/metabolismo , Sulbactam/farmacología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química
18.
J Am Chem Soc ; 136(14): 5508-19, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24689993

RESUMEN

Controlled/living radical polymerization techniques have transformed polymer chemistry in the last few decades, affording the production of polymers with precise control over both molecular weights and architectures. It is now possible to synthesize almost an infinite variety of macromolecules using nonspecialized equipment, finding applications in high-tech industry. However, they have several shortcomings. Until recently, living radical polymerizations could not be controlled by an external stimulus, such as visible light, pH, mechanical, chemical, etc. Moreover, they are usually sensitive to trace amounts of oxygen in the system. In this Article, we report a photoinduced living polymerization technique, which is able to polymerize a large range of monomers, including conjugated and unconjugated monomers, using ultralow concentrations of an iridium-based photoredox catalyst (typically 1 ppm to monomers) and a low energy visible LED as the light source (1-4.8 W, λ(max) = 435 nm). The synthesis of homopolymers with molecular weights ranging from 1000 to 2,000,000 g/mol was successfully achieved with narrow molecular weight distributions (M(w)/M(n) < 1.3). In addition, chain extensions of poly(methacrylate)s, poly(styrene), poly(N-vinyl pyrrolidinone), poly(vinyl ester)s, and poly(acrylate)s were performed to prepare diblock copolymers. The reusability of the catalyst was demonstrated by the synthesis of a decablock polymer by multiple chain extensions. Most importantly, this process was employed to prepare well-defined polymers and multiblock copolymers in the presence of air.


Asunto(s)
Oxígeno/química , Polímeros/síntesis química , Radicales Libres/síntesis química , Radicales Libres/química , Estructura Molecular , Procesos Fotoquímicos , Polimerizacion , Polímeros/química
19.
J Am Chem Soc ; 135(8): 2895-8, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23406484

RESUMEN

Rapid mix-rapid freeze is a powerful method to study the mechanisms of enzyme-substrate reactions in solution. Here we report a protocol that combines this method with normal (non-resonance) Raman microscopy to enable us to define molecular details of intermediates at early time points. With this combined method, SHV-1, a class A ß-lactamase, and tazobactam, a commercially available ß-lactamase inhibitor, were rapidly mixed on the millisecond time scale and then were flash-frozen by injection into an isopentane solution surrounded by liquid nitrogen. The "ice" was finally freeze-dried and characterized by Raman microscopy. We found that the reaction is almost complete in solution at 25 ms, giving rise to a major population composed of the trans-enamine intermediate. Between 25 and 500 ms, minor populations of protonated imine are detected that have previously been postulated to precede enamine intermediates. However, within 1 s, the imines are converted entirely to enamines. Interestingly, with this method, we can measure directly the turnover number of SHV-1 and tazobactam. The enzyme is completely inhibited at 1:4 ratio (enzyme:inhibitor) or greater, a number that agrees with the turnover number derived from steady-state kinetic methods. This application, employing non-intensity-enhanced Raman spectroscopy, provides a general and effective route to study the early events in enzyme-substrate reactions.


Asunto(s)
Inhibidores Enzimáticos/química , Espectrometría Raman/métodos , Inhibidores de beta-Lactamasas
20.
J Am Chem Soc ; 134(27): 11206-15, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22702961

RESUMEN

The class D ß-lactamases are characterized by the presence of a carboxylated lysine in the active site that participates in catalysis. Found in Acinetobacter baumannii, OXA-24 is a class D carbapenem hydrolyzing enzyme that exhibits resistance to most available ß-lactamase inhibitors. In this study, the reaction between a 6-alkylidiene penam sulfone inhibitor, SA-1-204, in single crystals of OXA-24 is followed by Raman microscopy. Details of its reaction with SA-1-204 provide insight into the enzyme's mode of action and help define the mechanism of inhibition. When the crystal is maintained in HEPES buffer, the reaction is fast, shorter than the time scale of the Raman experiment. However, when the crystal holding solution contains 28% PEG 2000, the reaction is slower and can be recorded by Raman microscopy in real time; the inhibitor's Raman bands quickly disappear, transient features are seen due to an early intermediate, and, at approximately 2-11 min, new bands appear that are assigned to the late intermediate species. At about 50 min, bands due to all intermediates are replaced by Raman signals of the unreacted inhibitor. The new population remains unchanged indicating (i) that the OXA-24 is no longer active and (ii) that the decarboxylation of Lys84 occurred during the first reaction cycle. Using absorbance spectroscopy, a one-cycle reaction could be carried out in aqueous solution producing inactive OXA-24 as assayed by the chromogenic substrate nitrocefin. However, activity could be restored by reacting aqueous OXA-24 with a large excess of NaHCO(3), which recarboxylates Lys84. In contrast, the addition of NaHCO(3) was not successful in reactivating OXA-24 in the crystalline state; this is ascribed to the inability to create a concentration of NaHCO(3) in large excess over the OXA-24 that is present in the crystal. The finding that inhibitor compounds can inactivate a class D enzyme by promoting decarboxylation of an active site lysine suggests a novel function that could be exploited in inhibitor design.


Asunto(s)
Acinetobacter baumannii/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores de beta-Lactamasas , beta-Lactamasas/metabolismo , Acinetobacter baumannii/química , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Dominio Catalítico/efectos de los fármacos , Cefalosporinas/metabolismo , Descarboxilación/efectos de los fármacos , Lisina/química , Lisina/metabolismo , Espectrometría Raman , beta-Lactamasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...