Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
NPJ Precis Oncol ; 8(1): 19, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38273014

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.

2.
Nat Cancer ; 3(4): 471-485, 2022 04.
Article En | MEDLINE | ID: mdl-35484422

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Ferroptosis , Neuroblastoma , Cell Death , Child , Cysteine/therapeutic use , Ferroptosis/genetics , Glutathione/therapeutic use , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics
3.
Cell Stem Cell ; 25(2): 241-257.e8, 2019 08 01.
Article En | MEDLINE | ID: mdl-31303549

Brain tumor stem cells (BTSCs) are a chemoresistant population that can drive tumor growth and relapse, but the lack of BTSC-specific markers prevents selective targeting that spares resident stem cells. Through a ribosome-profiling analysis of mouse neural stem cells (NSCs) and BTSCs, we find glycerol-3-phosphate dehydrogenase 1 (GPD1) expression specifically in BTSCs and not in NSCs. GPD1 expression is present in the dormant BTSC population, which is enriched at tumor borders and drives tumor relapse after chemotherapy. GPD1 inhibition prolongs survival in mouse models of glioblastoma in part through altering cellular metabolism and protein translation, compromising BTSC maintenance. Metabolomic and lipidomic analyses confirm that GPD1+ BTSCs have a profile distinct from that of NSCs, which is dependent on GPD1 expression. Similar GPD1 expression patterns and prognostic associations are observed in human gliomas. This study provides an attractive therapeutic target for treating brain tumors and new insights into mechanisms regulating BTSC dormancy.


Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glioma/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Neoplastic Stem Cells/physiology , Neural Stem Cells/physiology , Neurons/physiology , Animals , Biomarkers, Tumor/metabolism , Brain/pathology , Brain Neoplasms/pathology , Disease Models, Animal , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioma/pathology , Glycerolphosphate Dehydrogenase/genetics , Humans , Metabolome , Mice , Recurrence , Tumor Cells, Cultured
4.
Front Mol Neurosci ; 10: 309, 2017.
Article En | MEDLINE | ID: mdl-29033785

CHD7 (Chromo-Helicase-DNA binding protein 7) protein is an ATP-dependent chromatin remodeler. Heterozygous mutation of the CHD7 gene causes a severe congenital disease known as CHARGE syndrome. Most CHARGE syndrome patients have brain structural anomalies, implicating an important role of CHD7 during brain development. In this review, we summarize studies dissecting developmental functions of CHD7 in the brain and discuss pathogenic mechanisms behind neurodevelopmental defects caused by mutation of CHD7. As we discussed, CHD7 protein exhibits a remarkably specific and dynamic expression pattern in the brain. Studies in human and animal models have revealed that CHD7 is involved in multiple developmental lineages and processes in the brain. Mechanistically, CHD7 is essential for neural differentiation due to its transcriptional regulation in progenitor cells.

5.
Cell Syst ; 5(3): 237-250.e8, 2017 09 27.
Article En | MEDLINE | ID: mdl-28843484

While many tumors initially respond to chemotherapy, regrowth of surviving cells compromises treatment efficacy in the long term. The cell-biological basis of this regrowth is not understood. Here, we characterize the response of individual, patient-derived neuroblastoma cells driven by the prominent oncogene MYC to the first-line chemotherapy, doxorubicin. Combining live-cell imaging, cell-cycle-resolved transcriptomics, and mathematical modeling, we demonstrate that a cell's treatment response is dictated by its expression level of MYC and its cell-cycle position prior to treatment. All low-MYC cells enter therapy-induced senescence. High-MYC cells, by contrast, disable their cell-cycle checkpoints, forcing renewed proliferation despite treatment-induced DNA damage. After treatment, the viability of high-MYC cells depends on their cell-cycle position during treatment: newborn cells promptly halt in G1 phase, repair DNA damage, and form re-growing clones; all other cells show protracted DNA repair and ultimately die. These findings demonstrate that fast-proliferating tumor cells may resist cytotoxic treatment non-genetically, by arresting within a favorable window of the cell cycle.


Cell Cycle Checkpoints/genetics , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins c-myc/genetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , Doxorubicin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genetic Predisposition to Disease/genetics , Humans , Models, Theoretical , Neuroblastoma/genetics , Primary Cell Culture , Transcriptome/genetics
6.
Bioinformatics ; 33(2): 235-242, 2017 01 15.
Article En | MEDLINE | ID: mdl-27663498

MOTIVATION: Single-cell transcriptome data provide unprecedented resolution to study heterogeneity in cell populations and present a challenge for unsupervised classification. Popular methods, like principal component analysis (PCA), often suffer from the high level of noise in the data. RESULTS: Here we adapt Nonnegative Matrix Factorization (NMF) to study the problem of identifying subpopulations in single-cell transcriptome data. In contrast to the conventional gene-centered view of NMF, identifying metagenes, we used NMF in a cell-centered direction, identifying cell subtypes ('metacells'). Using three different datasets (based on RT-qPCR and single cell RNA-seq data, respectively), we show that NMF outperforms PCA in identifying subpopulations in an accurate and robust way, without the need for prior feature selection; moreover, NMF successfully recovered the broad classes on a large dataset (thousands of single-cell transcriptomes), as identified by a computationally sophisticated method. NMF allows to identify feature genes in a direct, unbiased manner. We propose novel approaches for determining a biologically meaningful number of subpopulations based on minimizing the ambiguity of classification. In conclusion, our study shows that NMF is a robust, informative and simple method for the unsupervised learning of cell subtypes from single-cell gene expression data. AVAILABILITY AND IMPLEMENTATION: https://github.com/ccshao/nimfa CONTACTS: c.shao@Dkfz-Heidelberg.de or t.hoefer@Dkfz-Heidelberg.deSupplementary information: Supplementary data are available at Bioinformatics online.


Gene Expression Profiling/methods , Single-Cell Analysis/methods , Software , Statistics as Topic/methods , Animals , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Computational Biology/methods , Mice , Sequence Analysis, RNA/methods
7.
Cancer Res ; 76(18): 5523-37, 2016 09 15.
Article En | MEDLINE | ID: mdl-27635046

The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR.


DNA Methylation/genetics , Epigenesis, Genetic/genetics , Neuroblastoma/genetics , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Chromatin Immunoprecipitation , Cluster Analysis , Female , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/mortality , Neuroblastoma/pathology , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , Transcriptome , Young Adult
8.
Nature ; 526(7575): 700-4, 2015 Oct 29.
Article En | MEDLINE | ID: mdl-26466568

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Recombination, Genetic/genetics , Telomerase/genetics , Telomerase/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 5/genetics , DNA Helicases/genetics , DNA Methylation , Enhancer Elements, Genetic/genetics , Enzyme Activation/genetics , Gene Amplification/genetics , Gene Silencing , Humans , Infant , N-Myc Proto-Oncogene Protein , Neuroblastoma/classification , Neuroblastoma/enzymology , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Prognosis , RNA, Messenger/analysis , RNA, Messenger/genetics , Risk , Translocation, Genetic/genetics , Up-Regulation/genetics , X-linked Nuclear Protein
9.
Mol Oncol ; 9(8): 1704-19, 2015 Oct.
Article En | MEDLINE | ID: mdl-26040981

Recurrent gain on chromosome 3q26 encompassing the gene locus for the transcription factor SOX2 is a frequent event in human squamous cell carcinoma, including head and neck squamous cell carcinoma (HNSCC). Numerous studies demonstrated that SOX2 expression and function is related to distinct aspects of tumor cell pathophysiology. However, the underlying molecular mechanisms are not well understood, and the correlation between SOX2 expression and clinical outcome revealed conflicting data. Transcriptional profiling after silencing of SOX2 expression in a HNSCC cell line identified a set of up-regulated genes related to cell motility (e.g. VIM, FN1, CDH2). The inverse regulation of SOX2 and aforementioned genes was validated in 18 independent HNSCC cell lines from different anatomical sites. The inhibition of cell migration and invasion by SOX2 was confirmed by constant or conditional gene silencing and accelerated motility of HNSCC cells after SOX2 silencing was partially reverted by down-regulation of vimentin. In a retrospective study, SOX2 expression was determined by immunohistochemical staining on tissue microarrays containing primary tumor specimens of two independent HNSCC patient cohorts. Low SOX2 expression was found in 19.3% and 44.9% of primary tumor specimens, respectively. Univariate analysis demonstrated a statistically significant correlation between low SOX2 protein levels and reduced progression-free survival (Cohort I 51 vs. 16 months; Cohort II 33 vs. 12 months) and overall survival (Cohort I 150 vs. 37 months; Cohort II 33 vs. 16 months). Multivariate Cox proportional hazard model analysis confirmed that low SOX2 expression serves as an independent prognostic marker for HNSCC patients. We conclude that SOX2 inhibits tumor cell motility in HNSCC cells and that low SOX2 expression serves as a prognosticator to identify HNSCC patients at high risk for treatment failure.


Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Cell Movement/genetics , Gene Deletion , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , SOXB1 Transcription Factors/genetics , Vimentin/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SOXB1 Transcription Factors/metabolism , Squamous Cell Carcinoma of Head and Neck , Survival Analysis , Vimentin/metabolism
10.
Clin Cancer Res ; 21(8): 1904-15, 2015 Apr 15.
Article En | MEDLINE | ID: mdl-25231397

PURPOSE: To optimize neuroblastoma treatment stratification, we aimed at developing a novel risk estimation system by integrating gene expression-based classification and established prognostic markers. EXPERIMENTAL DESIGN: Gene expression profiles were generated from 709 neuroblastoma specimens using customized 4 × 44 K microarrays. Classification models were built using 75 tumors with contrasting courses of disease. Validation was performed in an independent test set (n = 634) by Kaplan-Meier estimates and Cox regression analyses. RESULTS: The best-performing classifier predicted patient outcome with an accuracy of 0.95 (sensitivity, 0.93; specificity, 0.97) in the validation cohort. The highest potential clinical value of this predictor was observed for current low-risk patients [5-year event-free survival (EFS), 0.84 ± 0.02 vs. 0.29 ± 0.10; 5-year overall survival (OS), 0.99 ± 0.01 vs. 0.76 ± 0.11; both P < 0.001] and intermediate-risk patients (5-year EFS, 0.88 ± 0.06 vs. 0.41 ± 0.10; 5-year OS, 1.0 vs. 0.70 ± 0.09; both P < 0.001). In multivariate Cox regression models for low-risk/intermediate-risk patients, the classifier outperformed risk assessment of the current German trial NB2004 [EFS: hazard ratio (HR), 5.07; 95% confidence interval (CI), 3.20-8.02; OS: HR, 25.54; 95% CI, 8.40-77.66; both P < 0.001]. On the basis of these findings, we propose to integrate the classifier into a revised risk stratification system for low-risk/intermediate-risk patients. According to this system, we identified novel subgroups with poor outcome (5-year EFS, 0.19 ± 0.08; 5-year OS, 0.59 ± 0.1), for whom we propose intensified treatment, and with beneficial outcome (5-year EFS, 0.87 ± 0.05; 5-year OS, 1.0), who may benefit from treatment de-escalation. CONCLUSIONS: Combination of gene expression-based classification and established prognostic markers improves risk estimation of patients with low-risk/intermediate-risk neuroblastoma. We propose to implement our revised treatment stratification system in a prospective clinical trial.


Biomarkers, Tumor/genetics , Gene Expression Profiling , Neuroblastoma/genetics , Neuroblastoma/mortality , Cluster Analysis , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Neuroblastoma/diagnosis , Neuroblastoma/therapy , Prognosis , Regression Analysis , Reproducibility of Results , Risk Assessment , Risk Factors
11.
BMC Genomics ; 14: 567, 2013 Aug 20.
Article En | MEDLINE | ID: mdl-23957789

BACKGROUND: Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear. RESULTS: We identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation. CONCLUSIONS: In this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions.


Gene Expression Profiling , Hibernation/genetics , Phenotype , Sciuridae/genetics , Sciuridae/physiology , Animals , Caloric Restriction , Circadian Clocks/genetics , Cold Temperature , Female , Gene Knockout Techniques , Humans , Mice , Oligonucleotide Array Sequence Analysis , PPAR alpha/deficiency , PPAR alpha/genetics , Reperfusion Injury/genetics , Sleep Deprivation/genetics
12.
Physiol Genomics ; 42A(1): 39-51, 2010 Sep.
Article En | MEDLINE | ID: mdl-20442247

MicroRNAs (miRNAs) are 19- to 25-nucleotide-long small and noncoding RNAs now well-known for their regulatory roles in gene expression through posttranscriptional and translational controls. Mammalian hibernation is a physiological process involving profound changes in set-points for food consumption, body mass and growth, body temperature, and metabolic rate in which miRNAs may play important regulatory roles. In an initial study, we analyzed miRNAs in the liver of an extreme hibernating species, the Arctic ground squirrel (Spermophilus parryii), using massively parallel Illumina sequencing technology. We identified >200 ground squirrel miRNAs, including 18 novel miRNAs specific to ground squirrel and mir-506 that is fast evolving in the ground squirrel lineage. Comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 mo after hibernation had ended (nonhibernating), we identified differentially expressed miRNAs during hibernation, which are also compared with the results from two other miRNA profiling methods: Agilent miRNA microarray and real-time PCR. Among the most significant miRNAs, miR-320 and miR-378 were significantly underexpressed during both stages of hibernation compared with nonhibernating animals, whereas miR-486 and miR-451 were overexpressed in late torpor but returned in early arousal to the levels similar to those in nonhibernating animals. Analyses of their putative target genes suggest that these miRNAs could play an important role in suppressing tumor progression and cell growth during hibernation. High-throughput sequencing data and microarray data have been submitted to GEO database with accession: GSE19808.


MicroRNAs/genetics , Sciuridae/genetics , Animals , Arctic Regions , Hibernation/genetics , Hibernation/physiology , MicroRNAs/classification , Oligonucleotide Array Sequence Analysis , Phylogeny , Polymerase Chain Reaction
13.
BMC Genomics ; 11: 201, 2010 Mar 26.
Article En | MEDLINE | ID: mdl-20338065

BACKGROUND: Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). RESULTS: Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. CONCLUSION: We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.


Expressed Sequence Tags , Genome , Ursidae/genetics , Alaska , Alternative Splicing , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation , Genome/genetics , Humans , Models, Molecular , Molecular Sequence Data , Organ Specificity , Phylogeny , Protein Structure, Tertiary , Sequence Alignment
14.
Mol Cell Proteomics ; 9(2): 313-26, 2010 Feb.
Article En | MEDLINE | ID: mdl-19955082

Mammalian hibernation involves complex mechanisms of metabolic reprogramming and tissue protection. Previous gene expression studies of hibernation have mainly focused on changes at the mRNA level. Large scale proteomics studies on hibernation have lagged behind largely because of the lack of an adequate protein database specific for hibernating species. We constructed a ground squirrel protein database for protein identification and used a label-free shotgun proteomics approach to analyze protein expression throughout the torpor-arousal cycle during hibernation in arctic ground squirrels (Urocitellus parryii). We identified more than 3,000 unique proteins from livers of arctic ground squirrels. Among them, 517 proteins showed significant differential expression comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 months after hibernation had ended (non-hibernating). Consistent with changes at the mRNA level shown in a previous study on the same tissue samples, proteins involved in glycolysis and fatty acid synthesis were significantly underexpressed at the protein level in both late torpid and early aroused animals compared with non-hibernating animals, whereas proteins involved in fatty acid catabolism were significantly overexpressed. On the other hand, when we compared late torpid and early aroused animals, there were discrepancies between mRNA and protein levels for a large number of genes. Proteins involved in protein translation and degradation, mRNA processing, and oxidative phosphorylation were significantly overexpressed in early aroused animals compared with late torpid animals, whereas no significant changes at the mRNA levels between these stages had been observed. Our results suggest that there is substantial post-transcriptional regulation of proteins during torpor-arousal cycles of hibernation.


Hibernation/physiology , Proteomics/methods , Sciuridae/metabolism , Animals , Arctic Regions , Blotting, Western , Databases, Protein , Gene Expression Profiling , Gene Expression Regulation , Hibernation/genetics , Humans , Liver/metabolism , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sciuridae/genetics
15.
PLoS Comput Biol ; 4(10): e1000193, 2008 Oct.
Article En | MEDLINE | ID: mdl-18846204

Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.


Circadian Rhythm/genetics , Gene Regulatory Networks , Animals , Computational Biology , Databases, Genetic , Humans , Macaca mulatta , Mammals , Mice , Mice, Knockout , Mice, Mutant Strains , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Promoter Regions, Genetic , Rats , Species Specificity , Tissue Distribution
...