Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170407, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296073

RESUMEN

The safety of underground drinking water has received widespread attention. However, few studies have focused on the occurrence and health risks of pollutants in underground drinking water of coking contaminated sites. In this study, the distribution characteristics, sources, and human health risks of benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) in underground drinking water from a typical coking contaminated site in Shanxi of China were investigated. The average concentrations of BTX and PAHs in coking plant (CP) were 5.1 and 4.8 times higher than those in residential area (RA), respectively. Toluene and Benzene were the main BTX, while Acenaphthene, Fluorene, and Pyrene were the main PAHs. Concentrations of BTX/PAHs were negatively correlated with altitude, revealing altitude might be an important geological factor influencing spatial distribution of BTX/PAHs. PMF model demonstrated that the BTX/PAHs pollution in RA mainly originated from coking industrial activities. Health risk assessments were conducted by a modified US EPA-based model, in which environmental concentrations were replaced by residual concentrations after boiling. Residual ratios of different BTX/PAHs were determined by boiling experiments to be 9.4-93.8 %. The average total carcinogenic risks after boiling were decreased from 2.6 × 10-6 to 1.4 × 10-6 for adults, and from 4.3 × 10-6 to 2.1 × 10-6 for children, suggesting boiling was an effective strategy to reduce the carcinogenic risks from BTX/PAHs, especially for ingestion pathway. Monte Carlo simulation results matched well with the calculated results, suggesting the uncertainty was acceptable and the risk assessment results were reliable. This study provided useful information for revealing the spatial distribution of BTX/PAHs in underground drinking water of coking contaminated sites, understanding their linkage with altitude, and also helped to more accurately evaluate the health risks by using the newly established boiling-modified models.


Asunto(s)
Coque , Agua Potable , Hidrocarburos Policíclicos Aromáticos , Adulto , Niño , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Benceno , Xilenos , Tolueno , Monitoreo del Ambiente , Altitud , China , Medición de Riesgo
2.
Sci Total Environ ; 892: 164401, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37247737

RESUMEN

Harmful algal blooms (HABs) caused by Karenia mikimotoi have posed great threats to marine ecosystems, and algal inactivation by symbiotic bacteria has been recognized as environmental benign methods for controlling HABs. However, the identified algicidal bacteria for K. mikimotoi is limited and exclusively based on indirect algicidal pathways, which may cause secondary pollution due to releasing toxic algicidal agents. In this study, a novel strain of algicidal bacteria Tenacibaculum sp. GD3 was isolated from the phycosphere of K. mikimotoi. The bacterial strain GD3 could achieve 92.6 % of inactivation efficiency against K. mikimotoi within 8 h of co-culturing period, which outperformed those in existing literatures reported so far. The algicidal mechanisms were revealed to be a rare direct cell-to-cell contact pathway, and the GD3 could grow by utilizing metabolites from K. mikimotoi, exhibiting excellent bacterial adaptability in the phycosphere. Cell morphology changes were monitored by live cell imaging system combined with SEM and TEM observations, which showed that the GD3 was first attached to the algal cell membrane, followed by lipid peroxidation and lysis of membrane protein. Oxidative stress responses were induced as reveled by up-regulation of intracellular ROSs and antioxidant enzyme activity. Photosynthetic parameters including rETRmax, Fv/Fm, YII and NPQ were reduced, and expression of functional genes involved in decomposition of chlorophyll and cell wall was significantly suppressed. Moreover, the intracellular release profile and acute toxicity assessment indicated that the GD3 could also detoxify the K. mikimotoi cultures and the released biomolecules would not cause adverse effect to marine environment. This study not only provides a novel algicidal bacterium against K. mikimotoi via a rare direct mode, but also helps to better understand the algicidal mechanisms at physiological and genetic level, thus moving forward the areas of HABs control by microbiological strategies.


Asunto(s)
Dinoflagelados , Ecosistema , Floraciones de Algas Nocivas , Dinoflagelados/fisiología , Bacterias , Fotosíntesis , Antioxidantes/farmacología
3.
Sci Total Environ ; 862: 160845, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526193

RESUMEN

Coking industry has been considered as important source of volatile organic compounds (VOCs) emissions. However, few studies have emphasized the occurrence and adverse effects of VOCs from coking wastewater treatment processes. In this research, pollution profiles of both air and water phase VOCs in a typical coking wastewater treatment plant were investigated in terms of distribution characteristics, air-water exchange, ozone formation potential (OFP) and associated human health risks. Thirty VOCs were detected in the air phase, in which benzene and naphthalene were found to be the major VOCs with total contribution of 87.81 %. Nineteen VOCs were detected in the water phase, in which benzene, naphthalene and toluene contribute most to total VOCs with total contribution of 75.1 %. The regulating tank (RT) was the major source of VOCs, and the emission rate of total VOCs from all unites was 2711.03 g/d with annual emission of 0.99 t. The emission factor was estimated to be 1.36 g VOCs/m3 wastewater. The air-water exchange was assessed using the Fugacity model, and water-to-air volatilization was predominant based on the net flux of air-water exchange. OFP evaluated by emission factor indicated that the total OFP in RT was the highest (1.52 g O3/m3 wastewater), and toluene contributed 41.8 % of the total OFP, followed by naphthalene accounting for 38.7 % The total carcinogenic risks were in the range of 8.60 × 10-6 to 2.18 × 10-3, in which the RT exceeded the significant risk threshold (>1 × 10-4). The non-carcinogenic risks of hazard quotient value in RT also exceeded the risk threshold (>1), and naphthalene was the major contributor accounting for 79.02 %. These results not only provided comprehensive knowledge on pollution profiles and environmental risks of VOCs during coking wastewater treatment processes, but also facilitated the implement of VOCs regulation and occupational health protection strategies in coking industries.


Asunto(s)
Contaminantes Atmosféricos , Coque , Ozono , Compuestos Orgánicos Volátiles , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Ozono/análisis , Benceno , Monitoreo del Ambiente/métodos , Medición de Riesgo , Naftalenos , Carcinógenos , Tolueno , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...