Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790849

RESUMEN

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteína de la Zonula Occludens-1 , Autofagia/genética , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Riñón , Pronóstico
2.
Mikrochim Acta ; 190(2): 59, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656362

RESUMEN

Based on the resonance energy transfer between CdS@CeO2 and Cu2O@PdAg, a quenching immunosensor for sensitive detection of prostate specific antigen (PSA) was constructed. The CdS@CeO2 heterostructure was obtained by in situ growth of CeO2 particles on the surface of CdS nanorods, and stable cathodic ECL emission was achieved using K2S2O8 as coreactant. Cu2O@PdAg was composed of Cu2O with tetradecahedral structure and bimetallic PdAg nanospheres and has a UV-V is absorption range between 600 and 800 nm. It overlaps with the ECL emission spectrum of CdS@CeO2, realizing the effective quenching of the ECL signal, which provides feasibility for subsequent practical application. The immunosensor exhibited good linearity in the concentration range 10 fg·mL-1 ~ 100 ng·mL-1, with a detection limit of 5.6 fg·mL-1. In sample analysis, the recoveries were 99.8-101%, and the relative standard deviation (RSD) was 0.85-1.6% showing great potential and development value for the sensitive detection of prostate cancer.


Asunto(s)
Técnicas Biosensibles , Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Técnicas Electroquímicas , Inmunoensayo , Límite de Detección , Mediciones Luminiscentes , Neoplasias de la Próstata/diagnóstico
3.
Oncogene ; 41(4): 502-514, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782718

RESUMEN

Bladder cancer (BLCA) is the most common malignant tumor of the urinary system and is characterized by high metastatic rates and poor prognosis. The expression of tight junction protein 1 (TJP1) is associated with bladder cancer invasion; however, the mechanism by which TJP1 affects vasculature remodeling remains unknown. In this study, we found that TJP1 expression correlated with tumor angiogenesis and poor overall survival in clinical samples. Furthermore, TJP1 overexpression promoted tumor angiogenesis in BLCA cells and stimulated recruitment of macrophages to tumors by upregulating CCL2 expression. Mechanistically, TJP1 interacted with TWIST1 and enhanced the transcriptional activity of CCL2. The impairment of tumor angiogenesis caused by knockdown of TJP1 was dramatically rescued by overexpression of TWIST1. Furthermore, TJP1 recruited USP2, which deubiquitinated TWIST1, thereby protecting TWIST1 from proteasome-mediated protein degradation. In conclusion, our results suggest that TJP1 controls angiogenesis in BLCA via TWIST1-dependent regulation of CCL2. We demonstrate that TJP1 functions as a scaffold for the interaction between USP2 and TWIST1 and this may provide potential therapeutic targets in bladder cancer.


Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Proteína de la Zonula Occludens-1/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Desnudos , Transfección , Neoplasias de la Vejiga Urinaria/patología
4.
Mikrochim Acta ; 188(10): 344, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528141

RESUMEN

A dual signal-amplified sandwich electrochemiluminescence (ECL) immunosensor was fabricated for trace detection of procalcitonin (PCT). CeO2-Au@Pt composed of sea urchin-like Au@Pt nanoparticles coated on CeO2 hollow nanospheres was immobilized on electrode surface to electrochemically catalyze H2O2 to produce a large number of superoxide anion (O2•-). The immunosensor was prepared by linking the capture antibody on immobilized CeO2-Au@Pt with heptapeptide (HWRGWVC), which could maintain the activity of the antibody. The prepared Au star@BSA was used to bind abundant luminol for labeling the secondary antibody (Ab2). Upon the sandwich-typed immunoreactions, the O2•- could react with the introduced luminol on the immunosensor surface to produce strong ECL intensity. With an outstanding linear detection range and a low detection limit of 17 fg/mL, the ECL immunosensor permitted ultrasensitive detection of PCT at a low H2O2 concentration and demonstrated its high application potential in the clinical assay.


Asunto(s)
Técnicas Biosensibles , Cerio/química , Oro/química , Nanopartículas del Metal/química , Nanosferas/química , Platino (Metal)/química , Polipéptido alfa Relacionado con Calcitonina/sangre , Anticuerpos/química , Anticuerpos/inmunología , Antígenos/inmunología , Técnicas Electroquímicas , Humanos , Peróxido de Hidrógeno/química , Inmunoensayo , Mediciones Luminiscentes , Luminol/química , Oligopéptidos/química , Polipéptido alfa Relacionado con Calcitonina/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/inmunología , Superóxidos/química
5.
J Cell Mol Med ; 25(18): 8836-8849, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34378321

RESUMEN

Colorectal cancer (CRC) is the third most malignant tumour worldwide, with high mortality and recurrence. Chemoresistance is one of the main factors leading to metastasis and poor prognosis in advanced CRC patients. By analysing the Gene Expression Omnibus data set, we found higher hexokinase 2 (HK2) expression levels in patients with metastatic CRC than in those with primary CRC. Moreover, we observed higher enrichment in oxaliplatin resistance-related gene sets in metastatic CRC than in primary CRC. However, the underlying relationship has not yet been elucidated. In our study, HK2 expression was significantly elevated in CRC patients. Gene set enrichment analysis (GSEA) revealed multi-drug resistance and epithelial-mesenchymal transition (EMT) pathways related to high HK2 expression. Our results showed that knockdown of HK2 significantly inhibited vimentin and Twist1 expression and promoted TJP1 and E-cadherin expression in CRC cells. Additionally, transcriptional and enzymatic inhibition of HK2 by 3-bromopyruvate (3-bp) impaired oxaliplatin resistance in vitro and in vivo. Mechanistically, HK2 interacts with and stabilized Twist1 by preventing its ubiquitin-mediated degradation, which is related to oxaliplatin resistance, in CRC cells. Overexpression of Twist1 reduced the apoptosis rate by HK2 knockdown in CRC cells. Collectively, we discovered that HK2 is a crucial regulator that mediates oxaliplatin resistance through Twist1. These findings identify HK2 and Twist1 as promising drug targets for CRC chemoresistance.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Proteínas Nucleares/metabolismo , Oxaliplatino/farmacología , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C
6.
Mol Ther Oncolytics ; 19: 197-207, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33251332

RESUMEN

The molecular alterations that initiate the development of multiple myeloma (MM) are not fully understood. Our results revealed that TJP1 was downregulated in MM and positively related to the overall survival of MM patients in The Cancer Genome Atlas (TCGA) database and patient samples. In parallel, cell adhesion capacity representing MM metastasis was decreased in MM patients compared with healthy samples, together with the significantly activated epithelial-to-mesenchymal transition (EMT) transcriptional-like patterns of MM cells. Further analyses demonstrated that TJP1 negatively regulated EMT and consequently positively regulated cell adhesion in MM from TCGA database and MM1s cells. Furthermore, the methylation level of each CpG site on the TJP1 promoter was negatively correlated with TJP1 expression levels. Quantitative real-time PCR and western blot assays demonstrated that methylase DNMT1 regulated the methylation of TJP1. Finally, treatment with a combination of the MM clinical medicine bortezomib, methylation inhibitor, or TJP1 overexpression significantly suppressed the viability and progression of tumor cells of MM orthotopic models. In summary, our results indicate that DNMT1 promotes the methylation of TJP1 promoter, thereby decreasing its expression and regulating the development of EMT-inhibited MM cell adhesion. Therefore, methylation of TJP1 is a potential therapeutic agent to prevent the progression of MM disease.

7.
Oncogene ; 39(37): 5964-5978, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32753650

RESUMEN

Oligodendroglioma is an important type of lower-grade glioma (LGG), which is a slowly progressing brain tumor. Many LGGs eventually transform into a more aggressive or malignant type. Enhanced angiogenesis is a characteristic of malignantly transformed oligodendroglioma (m-oligodendroglioma). However, the pathogenesis and signaling pathways associated with angiogenesis and proliferation in m-oligodendroglioma are not well understood. In this study, we identified that Insulin Gene Enhancer Protein (ISL2) and its angiogenic capacity were inversely related to survival according to LGG patient data from an online database, and this was further confirmed with pathological LGG patient samples, including malignantly transformed samples, by detecting the expression of ISL2, the angiogenic markers vascular endothelial growth factor (VEGFA) and CD31 and the proliferation marker Ki-67. We then established novel oligodendroglioma patient tumor-derived orthotopic xenograft mouse models and cell lines to verify the role of ISL2 in regulating angiogenesis to promote oligodendroglioma growth and malignant transformation. Furthermore, ISL2 regulated ANGPT2 transcription by binding to the ANGPT2 promoter. Then, ANGPT2, a downstream gene, activated angiogenesis through VEGFA to promote oligodendroglioma malignant transformation. Finally, combining AAV-ISL2-shRNA with temozolomide suppressed oligodendroglioma progression more effectively than either monotherapy in vivo and in vitro. Thus, hypoxia-induced ISL2 regulated ANGPT2, which subsequently induced angiogenesis to promote oligodendroglioma growth and malignant transformation. Malignancy was accompanied by worsened hypoxia inside the tumor mass, creating a positive feedback loop. In conclusion, this study suggests that ISL2 is a biomarker for oligodendroglioma progression and that anti-ISL2 therapy may offer a potential clinical strategy for treating m-oligodendroglioma.


Asunto(s)
Angiopoyetina 2/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas con Homeodominio LIM/metabolismo , Neovascularización Patológica/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM/genética , Ratones , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/genética , Oligodendroglioma/mortalidad , Oligodendroglioma/patología , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mikrochim Acta ; 187(6): 332, 2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32415589

RESUMEN

A novel photoelectrochemical (PEC) immunosensor for the determination of cardiac troponin I (cTnI) was constructed. The flower-like stannic oxide (SnO2) with large specific surface area was prepared by hydrothermal synthesis. Nitrogen-doped carbon quantum dots (NCQDs) with excellent surface property were used as a sensitizer for SnO2. Bismuth oxyiodide (BiOI) is a narrow band gap (1.83 eV) nanomaterial, which was firstly modified on NCQDs-sensitized SnO2 through in situ growth method. After NCQDs with small size and BiOI nanoparticles are successively combined with SnO2, the SnO2/NCQDs/BiOI microflower was obtained, which possessed good photochemical properties. Using visible light as excitation source and ascorbic acid (AA) as electron donor, the ultrasensitive and quantitative determination of cTnI was realized by detecting the changes of photocurrent under different concentrations of cTnI. The PEC immunosensor showed a large-scaled response (0.001-100 ng mL-1) and a low detection limit (0.3 pg mL-1) under optimised experimental conditions. The sensor has potential clinical value in the prediction and diagnosis of cardiovascular diseases in elderly patients with diabetes. Graphical abstract.


Asunto(s)
Bismuto/química , Inmunoensayo/métodos , Puntos Cuánticos/química , Compuestos de Estaño/química , Troponina I/sangre , Anticuerpos Inmovilizados/inmunología , Ácido Ascórbico/química , Carbono/química , Técnicas Electroquímicas , Humanos , Luz , Límite de Detección , Nitrógeno/química , Oxidación-Reducción , Puntos Cuánticos/efectos de la radiación , Troponina I/inmunología
9.
Biosens Bioelectron ; 157: 112157, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32250931

RESUMEN

A suitable electron donor, which guarantees the stability of the whole system, is considered as the driving force of the PEC sensor. Nowadays, searching appropriate electron donor is still one of the orientations to explorate in the field of sensor. Na48[H496Mo368O1464S48]·ca.1000H2O (abbr. {Mo368}), as a type of polyoxometalate, has perfect morphology, definite size and unique electronic property. Due to the prominent water solubility, {Mo368} usually releases small cations and exists as large anions in the ultrapure water. The interesting property endows {Mo368} with excellent reducibility, which provides great feasibility to become an outstanding electron donor. In addition, FeOOH prepared through a simple operation owns high adsorption capacity, which ensures the fastness of other materials. Subsequently, the narrow band-gap of Bi2S3 and the unique noble metal properties of Au nanoparticles are utilized to co-sensitize FeOOH to improve the light-harvesting capability and photoelectric conversion efficiency. Combined with the specificity recognition of antigen and antibody, a novel photoelectrochemical sensor is constructed with a wide detection range of 1.00 pg mL-1 - 100 ng mL-1 and low detection limit (0.76 pg mL-1), which achieves the sensitive detection of cardiac troponin I in early diagnosis of cardiovascular disease.


Asunto(s)
Anticuerpos Inmovilizados/química , Bismuto/química , Compuestos Férricos/química , Oro/química , Molibdeno/química , Sulfuros/química , Troponina I/sangre , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura
10.
ACS Appl Mater Interfaces ; 12(8): 9098-9106, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31990177

RESUMEN

In this work, a triple-amplified biosensor with a bioactivity-maintained peculiarity was constructed for quantitative procalcitonin (PCT) detection. As everyone knows, a strong electrochemiluminescence (ECL) signal is the premise to ensure high sensitivity for trace target detection. Hence, a valid tactic was developed to achieve signal amplification of luminophor by using Co2+-based metal-organic frameworks (ZIF-67) and silver-cysteine (AgCys). The ZIF-67 particles, which have more atomically dispersed Co2+, could play the role of a co-reaction accelerator to catalyze S2O82- to generate abundant Co3+ and sulfate radical anions (SO4•-). Afterward, a mass of Co3+ was reduced to more hydroxyl radicals (OH•) by H2O, thus ulteriorly reducing S2O82- to generate more SO4•-. Remarkably, S2O82- was reduced to SO4•- continuously with the recycling of Co2+ and Co3+, which realized an effective signal amplification. Meanwhile, the AgCys complex with superior catalysis and biocompatibility was prepared to further improve the ECL signal and maintain the bioactivity of the biomolecule. Furthermore, HWRGWVC, a heptapeptide that was used for combining the Fc fragments of an antibody by Au-S bonding to achieve the fixed point fixation, could not only maintain bioactivity of an antibody but also improved its incubation efficiency, thus further enhancing biosensor sensitivity. Under optimum conditions, the proposed biosensor realized highly sensitive assay for PCT with a wide dynamic range from 10 fg/mL to 100 ng/mL and a detection limit as low as 3.67 fg/mL. With superior stability, selectivity, and repeatability, the prepared biosensor revealed immense potential application of ultrasensitive assay for PCT in human serum.


Asunto(s)
Cobalto/química , Cisteína/química , Estructuras Metalorgánicas/química , Perileno , Polipéptido alfa Relacionado con Calcitonina/análisis , Plata/química , Humanos , Perileno/análogos & derivados , Perileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA