Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(8): 086806, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192582

RESUMEN

The effect of a coherence resonance is observed experimentally in a GaAs/Al_{0.45}Ga_{0.55}As superlattice under dc bias at room temperature, which is driven by noise. For an applied voltage, for which no current self-oscillations are observed, regular current self-oscillations with a frequency of about 82 MHz are induced by exceeding a certain noise amplitude. In addition, a novel kind of a stochastic resonance is identified, which is triggered by the coherence resonance. This stochastic resonance appears when the device is driven by an external ac signal with a frequency, which is relatively close to that of the regular current self-oscillations at the coherence resonance. The intrinsic oscillation mode in the coherence resonance is found to be phase locked by an extremely weak ac signal. It is demonstrated that an excitable superlattice device can be used for the fast detection of weak signals submerged in noise. These results are very well reproduced by results using numerical simulations based on a sequential resonant tunneling model of nonlinear electron transport in semiconductor superlattices.

2.
Appl Opt ; 56(30): 8430-8435, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29091623

RESUMEN

A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.

3.
Appl Opt ; 55(14): 3740-5, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168285

RESUMEN

By orthogonally dual-shifting the air-hole rows in the triangular photonic crystal waveguide, a novel finely engineered slow light silicon photonic crystal waveguide is designed for higher-order temporal solitons and ultrashort temporal pulse compression with a large fabrication tolerance. The engineering of dispersion provides the waveguide with a wide wavelength range with only low anomalous dispersion covering, which makes the compression ratio wavelength-independent and stable even under ultralow input pulse energy. The simulation results are based on nonlinear Schrödinger equation modeling, which demonstrates that the input picosecond pulses in the broad wavelength range with ultralow pJ pulse energy can be stably compressed by a factor of 6 to higher-order temporal solitons in a 250 µm short waveguide.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 982-5, 2014 Apr.
Artículo en Chino | MEDLINE | ID: mdl-25007613

RESUMEN

In order to study the influencing factors on Raman spectroscopy, we research a series of comparative Raman spectroscopy of multi-walled carbon nanotubes (MWCNT) with different tube diameter and length. The results suggest that the G peak and D peak of MWCNT are all red-shifted as compared to that of polycrystalline graphite; In the same conditions, the peak intensity (G peak and D peak) is directly proportional to the diameter of the MWCNT, and inversely proportional to the length of the MWCNT; G peak frequency shift is closely related to the MWCNT diameter and length, which are inversely proportional to the diameter (with identical results of the single-walled carbon nanotube radial breathing modes) and direct proportional to the length. While, the influences of the diameter and length on D peak frequency shift are weak, and future analysis for the reason of this kind of phenomenon is as follows. Subsequently, we investigated the relation between D peak frequency shift and MWCNT aspect ratio, the relationship between G peak frequency shift and aspect ratio is nearly linear increase. Using the same analysis method, we plotted the different graphs of G peak and D peak intensity vs the aspect ratio of MWCNT, respectively. As the expected, the linear degression relation are existent in the two relationships.

5.
Appl Opt ; 52(31): 7524-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24216654

RESUMEN

A femtosecond laser provides an ideal source to investigate the laser-induced damage of a charge-coupled device (CCD) owing to its thermal-free and localized damage properties. For conventional damage mechanisms in the nanosecond laser regime, a leakage current and degradation of a point spread function or modulation transfer function of the CCD are caused by the thermal damages to the oxide and adjacent electrodes. However, the damage mechanisms are quite different for a femtosecond laser. In this paper, an area CCD was subjected to Ti: sapphire laser irradiation at 800 nm by 100 fs single pulses. Electric-induced oxide breakdown is considered to be the primary mechanism to cause a leakage current, and the injured oxide is between the gate and source in the metal-oxide semiconductor field-effect transistor (MOSFET) structure for one CCD pixel. Optical microscopy and scanning electron microscopy are used to investigate the damaged areas and the results show that the electrodes and the oxide underneath are not directly affected by the femtosecond laser, which helps to get rid of the conventional damage mechanisms. For the primary damage mechanism, direct damage by hot carriers, anode hole injection, and an enlarged electric field in the insulating layer are three possible ways to cause oxide breakdown. The leakage current is proved by the decrease of the resistance of electrodes to the substrate. The output saturated images and the dynamics of an area CCD indicate that the leakage current is from an electrode to a light sensing area (or gate to source for a MOSFET), which proves the oxide breakdown mechanism.

6.
Nanoscale Res Lett ; 8(1): 425, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24134512

RESUMEN

: Using first-principles calculations, we investigate the adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO) on monolayer MoS2. The most stable adsorption configuration, adsorption energy, and charge transfer are obtained. It is shown that all the molecules are weakly adsorbed on the monolayer MoS2 surface and act as charge acceptors for the monolayer, except NH3 which is found to be a charge donor. Furthermore, we show that charge transfer between the adsorbed molecule and MoS2 can be significantly modulated by a perpendicular electric field. Our theoretical results are consistent with the recent experiments and suggest MoS2 as a potential material for gas sensing application.

7.
J Phys Condens Matter ; 24(33): 335501, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22813480

RESUMEN

We report on the first-principles calculations of bandgap modulation in armchair MoS(2) nanoribbon (AMoS(2)NR) by transverse and perpendicular electric fields respectively. In the monolayer AMoS(2)NR case, it is shown that the bandgap can be significantly reduced and be closed by transverse field, whereas the bandgap modulation is absent under perpendicular field. The critical strength of transverse field for gap closure decreases as ribbon width increases. In the multilayer AMoS(2)NR case, in contrast, it is shown that the bandgap can be effectively reduced by both transverse and perpendicular fields. Nevertheless, it seems that the two fields exhibit different modulation effects on the gap. The critical strength of perpendicular field for gap closure decreases with increasing number of layers, while the critical strength of transverse field is almost independent of it.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1257-60, 2010 May.
Artículo en Chino | MEDLINE | ID: mdl-20672613

RESUMEN

Raman spectrum was applied to analyze the synthesis mechanism of nanostructure porous ZnO microspheres prepared via hydrothermal method assisted with trisodium citrate. The Raman spectrum characteristics of the sample revealed that the ZnO microspheres contained Zn-citrate complex, which was the complex of citrate acid group and Zn2+ in the reaction solution. The complex was chemisorbed on (204) and (503) faces of the Zn(OH)2 crystallite in the reacting solution, resulting in Zn(OH)2 nanosheet from the crystallite. Large quantities of Zn(OH)2 nanosheets aggregated as porous microspheres in hydrothermal process. Zn-citrate complex chemisorbed on the nanosheet improved the thermal stability of Zn(OH)2, which means a decomposition temperature over 200 degrees C. Nanostructure porous ZnO microspheres were obtained by heating Zn(OH)2 microspheres at 300 degrees C and the nanosheet structure was maintained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...