Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 12(6): e2553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35543304

RESUMEN

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is a chronic disease with a high incidence worldwide. T2DM can cause cognitive impairment, but its neuropathological basis is unclear. A variety of neuropsychiatric studies have found that abnormal functional connectivity (FC) in the central executive network (CEN), default-mode network (DMN), and salience network (SN) may be the neuropathological basis of cognitive dysfunction. The right dorsal anterior insula (dAI) is the core SN area. It plays an important role in regulating the CEN and the DMN. However, few studies have explored the relationship between cognitive impairment and FC among the right dAI, CEN, and DMN in patients with T2DM. METHODS: Resting-state functional magnetic resonance imaging was used to investigate FC between the right dAI and the CEN and DMN in 44 patients with T2DM and 41 sex-, age-, and education-matched healthy controls, as well as its relationship with clinical/cognitive variables. RESULTS: In patients with T2DM, FC between the right dAI and multiple brain regions of the CEN and DMN was generally decreased, and FC strength between the right dAI and the inferior frontal gyrus negatively correlated with trail making test A score (r = -0.421, p = 0.004). CONCLUSIONS: Patients with T2DM exhibit abnormal FC between the right dAI and the CEN and DMN. This may be one of the neuromechanisms of cognitive impairment in patients with T2DM. In addition, reduced FC between the right dAI and the right inferior frontal gyrus may be related to abnormal attention regulation in patients with T2DM.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Encéfalo/fisiología , Mapeo Encefálico/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Imagen por Resonancia Magnética/métodos
2.
Front Neurosci ; 15: 726350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630014

RESUMEN

Microvascular complications can accelerate cognitive impairment in patients with type 2 diabetes mellitus (T2DM) and have a high impact on their quality of life; however, the underlying mechanism is still unclear. The complex network in the human brain is the physiological basis for information processing and cognitive expression. Therefore, this study explored the relationship between the functional network topological properties and cognitive function in T2DM patients with and without microvascular complications (T2DM-C and T2DM-NC, respectively). Sixty-seven T2DM patients and 41 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological assessment. Then, graph theoretical network analysis was performed to explore the global and nodal topological alterations in the functional whole brain networks of T2DM patients. Correlation analyses were performed to investigate the relationship between the altered topological parameters and cognitive/clinical variables. The T2DM-C group exhibited significantly higher local efficiency (Eloc), normalized cluster coefficient (γ), and small-world characteristics (σ) than the HCs. Patients with T2DM at different clinical stages (T2DM-C and T2DM-NC) showed varying degrees of abnormalities in node properties. In addition, compared with T2DM-NC patients, T2DM-C patients showed nodal properties disorders in the occipital visual network, cerebellum and middle temporal gyrus. The Eloc metrics were positively correlated with HbA1c level (P = 0.001, r = 0.515) and the NE values in the right paracentral lobule were negatively related with serum creatinine values (P = 0.001, r = -0.517) in T2DM-C patients. This study found that T2DM-C patients displayed more extensive changes at different network topology scales. The visual network and cerebellar may be the central vulnerable regions of T2DM-C patients.

3.
Front Hum Neurosci ; 15: 621080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613213

RESUMEN

Type 2 diabetes mellitus (T2DM) is related to a variety of cognitive impairments that may even progress to dementia. Studies have found the angular gyrus (AG) is a cross-modal integration hub that is involved in a variety of cognitive processes. However, few studies have focused on the patterns of resting-state functional connections (rsFCs) of the AG in patients with T2DM. This study explored the functional connection (FC) between the AG and the whole brain and the relationship between the FC and clinical/cognitive variables in patients with T2DM. 44 patients with T2DM and 43 sex-, age-, and education-matched healthy controls underwent resting-state fMRI and received neuropsychological assessments. Compared with the control group, the T2DM group showed abnormal rsFCs between the AG and multiple brain regions. The FC between the left AG and the left medial temporal lobe in the T2DM group was positively correlated with scores on the Montreal Cognitive Assessment, after a Bonferroni correction (r = 0.40, P = 0.009). Collectively, patients with T2DM have abnormal FCs between the AG and extensive brain regions that may be related to various cognitive processes.

4.
Front Hum Neurosci ; 15: 796386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002661

RESUMEN

The risk of cognitive impairment in patients with type 2 diabetes mellitus (T2DM) is significantly higher than that in the general population, but the exact neurophysiological mechanism underlying this is still unclear. An abnormal change in the intrinsic anticorrelation of the dorsal attention network (DAN) and the default mode network (DMN) is thought to be the mechanism underlying cognitive deficits that occur in many psychiatric disorders, but this association has rarely been tested in T2DM. This study explored the relationship between the interaction patterns of the DAN-DMN and clinical/cognitive variables in patients with T2DM. Forty-four patients with T2DM and 47 sex-, age-, and education-matched healthy controls (HCs) underwent neuropsychological assessments, independent component analysis (ICA), and functional network connection analysis (FNC). The relationship of DAN-DMN anticorrelation with the results of a battery of neuropsychological tests was also assessed. Relative to the HC group, the DMN showed decreased functional connectivity (FC) in the right precuneus, and the DAN showed decreased FC in the left inferior parietal lobule (IPL) in patients with T2DM. Subsequent FNC analysis revealed that, compared with the HC group, the T2DM patients displayed significantly increased inter-network connectivity between the DAN and DMN. These abnormal changes were correlated with the scores of multiple neuropsychological assessments (P < 0.05). These findings indicate abnormal changes in the interaction patterns of the DAN-DMN may be involved in the neuropathology of attention and general cognitive dysfunction in T2DM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...