Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Diabetes Metab Res Rev ; 40(3): e3744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888801

RESUMEN

AIMS: Determining diabetes type in children has become increasingly difficult due to an overlap in typical characteristics between type 1 diabetes (T1D) and type 2 diabetes (T2D). The Diabetes Study in Children of Diverse Ethnicity and Race (DISCOVER) programme is a National Institutes of Health (NIH)-supported multicenter, prospective, observational study that enrols children and adolescents with non-secondary diabetes. The primary aim of the study was to develop improved models to differentiate between T1D and T2D in diverse youth. MATERIALS AND METHODS: The proposed models will evaluate the utility of three existing T1D genetic risk scores in combination with data on islet autoantibodies and other parameters typically available at the time of diabetes onset. Low non-fasting serum C-peptide (<0.6 nmol/L) between 3 and 10 years after diabetes diagnosis will be considered a biomarker for T1D as it reflects the loss of insulin secretion ability. Participating centres are enrolling youth (<19 years old) either with established diabetes (duration 3-10 years) for a cross-sectional evaluation or with recent onset diabetes (duration 3 weeks-15 months) for the longitudinal observation with annual visits for 3 years. Cross-sectional data will be used to develop models. Longitudinal data will be used to externally validate the best-fitting model. RESULTS: The results are expected to improve the ability to classify diabetes type in a large and growing subset of children who have an unclear form of diabetes at diagnosis. CONCLUSIONS: Accurate and timely classification of diabetes type will help establish the correct clinical management early in the course of the disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Niño , Adolescente , Humanos , Adulto Joven , Adulto , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Etnicidad , Estudios Transversales , Estudios Prospectivos
2.
Diabetes ; 72(11): 1629-1640, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625150

RESUMEN

Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity.

3.
J Immunol ; 211(7): 1108-1122, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594278

RESUMEN

IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Linfocitos T Reguladores , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Interleucina-2 , Fosfatidilinositol 3-Quinasas , Proliferación Celular
4.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498686

RESUMEN

The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Lactante , Estudios Transversales , Receptor de Muerte Celular Programada 1 , Autoanticuerpos , Envejecimiento
5.
Sci Data ; 10(1): 323, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237059

RESUMEN

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Donantes de Tejidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Genómica , Páncreas
6.
Front Immunol ; 13: 873560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693814

RESUMEN

Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-ß1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Factores de Transcripción Forkhead , Tratamiento Basado en Trasplante de Células y Tejidos , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Interferón gamma , Linfocitos T Reguladores
7.
Front Immunol ; 12: 739048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603322

RESUMEN

Background: The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic ß-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review: In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic ß-cells could potentially promote T1D development. Major Conclusions: We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced ß-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Antígeno CD47/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos de Diferenciación/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Estudios de Asociación Genética , Humanos , Inmunoterapia , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Polimorfismo Genético , Receptores Inmunológicos/genética , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Immunol Cell Biol ; 99(5): 496-508, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33483996

RESUMEN

The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to ß-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Genotipo , Ratones , Ratones Endogámicos NOD , Polimorfismo de Nucleótido Simple
9.
Front Immunol ; 11: 2180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013915

RESUMEN

The costimulatory molecule CD226 is highly expressed on effector/memory T cells and natural killer cells. Costimulatory signals received by T cells can impact both central and peripheral tolerance mechanisms. Genetic polymorphisms in CD226 have been associated with susceptibility to type 1 diabetes and other autoimmune diseases. We hypothesized that genetic deletion of Cd226 in the non-obese diabetic (NOD) mouse would impact type 1 diabetes incidence by altering T cell activation. CD226 knockout (KO) NOD mice displayed decreased disease incidence and insulitis in comparison to wild-type (WT) controls. Although female CD226 KO mice had similar levels of sialoadenitis as WT controls, male CD226 KO mice showed protection from dacryoadenitis. Moreover, CD226 KO T cells were less capable of adoptively transferring disease compared to WT NOD T cells. Of note, CD226 KO mice demonstrated increased CD8+ single positive (SP) thymocytes, leading to increased numbers of CD8+ T cells in the spleen. Decreased percentages of memory CD8+CD44+CD62L- T cells were observed in the pancreatic lymph nodes of CD226 KO mice. Intriguingly, CD8+ T cells in CD226 KO mice showed decreased islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-tetramer and CD5 staining, suggesting reduced T cell receptor affinity for this immunodominant antigen. These data support an important role for CD226 in type 1 diabetes development by modulating thymic T cell selection as well as impacting peripheral memory/effector CD8+ T cell activation and function.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Timocitos/inmunología , Animales , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos CD5/genética , Antígenos CD5/metabolismo , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Humanos , Epítopos Inmunodominantes/inmunología , Memoria Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Tolerancia Periférica , Receptores de Antígenos de Linfocitos T/metabolismo
10.
Horm Res Paediatr ; 93(5): 322-334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33113547

RESUMEN

INTRODUCTION: Insulin-like growth factor 1 receptor (IGF1R) mutations lead to systemic disturbances in growth and glucose homeostasis due to widespread IGF1R expression throughout the body. IGF1R is expressed by innate and adaptive immune cells, facilitating their development and exerting immunomodulatory roles in the periphery. CASE PRESENTATION: We report on a family presenting with a novel heterozygous IGF1R mutation with characterization of the mutation, IGF1R expression, and immune phenotyping. Twin probands presented clinically with short stature and hypoglycemia. Variable phenotypic expression was seen in 2 other family members carrying the IGF1R mutation. The probands were treated with exogenous growth hormone therapy and dietary cornstarch, improving linear growth and reducing hypoglycemic events. IGF1R c.641-2A>G caused abnormal mRNA splicing and premature protein termination. Flow cytometric immunophenotyping demonstrated lower IGF1R on peripheral blood mononuclear cells from IGF1R c.641-2A>G subjects. This alteration was associated with reduced levels of T-helper 17 cells and a higher percentage of T-helper 1 cells compared to controls, suggesting decreased IGF1R expression may affect CD4+ Th-cell lineage commitment. DISCUSSION: Collectively, these data suggest a novel loss-of-function mutation (c.641-2A>G) leads to aberrant mRNA splicing and IGF1R expression resulting in hypoglycemia, growth restriction, and altered immune phenotypes.


Asunto(s)
Codón sin Sentido , Anomalías Congénitas/genética , Hipoglucemia/genética , Receptor IGF Tipo 1/genética , Recuento de Linfocito CD4 , Estudios de Casos y Controles , Anomalías Congénitas/inmunología , Insuficiencia de Crecimiento/genética , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Leucocitos Mononucleares/metabolismo , Receptor IGF Tipo 1/metabolismo , Gemelos
11.
Diabetes ; 69(3): 413-423, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31826866

RESUMEN

Insulin-like growth factors (IGFs), specifically IGF1 and IGF2, promote glucose metabolism, with their availability regulated by IGF-binding proteins (IGFBPs). We hypothesized that IGF1 and IGF2 levels, or their bioavailability, are reduced during type 1 diabetes development. Total serum IGF1, IGF2, and IGFBP1-7 levels were measured in an age-matched, cross-sectional cohort at varying stages of progression to type 1 diabetes. IGF1 and IGF2 levels were significantly lower in autoantibody (AAb)+ compared with AAb- relatives of subjects with type 1 diabetes. Most high-affinity IGFBPs were unchanged in individuals with pre-type 1 diabetes, suggesting that total IGF levels may reflect bioactivity. We also measured serum IGFs from a cohort of fasted subjects with type 1 diabetes. IGF1 levels significantly decreased with disease duration, in parallel with declining ß-cell function. Additionally, plasma IGF levels were assessed in an AAb+ cohort monthly for a year. IGF1 and IGF2 showed longitudinal stability in single AAb+ subjects, but IGF1 levels decreased over time in subjects with multiple AAb and those who progressed to type 1 diabetes, particularly postdiagnosis. In sum, IGFs are dysregulated both before and after the clinical diagnosis of type 1 diabetes and may serve as novel biomarkers to improve disease prediction.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Estado Prediabético/metabolismo , Adolescente , Adulto , Autoanticuerpos/inmunología , Niño , Estudios de Cohortes , Estudios Transversales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Estado Prediabético/inmunología , Factores de Tiempo , Adulto Joven
12.
J Exp Med ; 216(11): 2479-2491, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31467037

RESUMEN

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Corticosterona/inmunología , Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/inmunología , Perfilación de la Expresión Génica/métodos , Humanos , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Sistema Hipófiso-Suprarrenal/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/inmunología
13.
Curr Opin Endocrinol Diabetes Obes ; 26(4): 188-194, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145130

RESUMEN

PURPOSE OF REVIEW: We review studies demonstrating lowered levels of insulin-like growth factors (IGFs) in patients with recent-onset type 1 diabetes (T1D) and discuss their potential roles in the disorder's pathogenesis. RECENT FINDINGS: IGFs have long been recognized as a class of hormones that promote growth, development, and cellular metabolism throughout the human body. More recently, studies have noted an association between reduced pancreatic weight/volume and T1D. Thus, we believe it is important to understand pancreatic regulation of IGF expression and bioavailability, as well as the impact of IGFs on pancreatic growth and islet health. Additional studies of IGFs have been extended to their influence on the inflammatory/regulatory balance of monocytes, B cells, and T cells; features which have been previously established to show dysregulation in settings of T1D. SUMMARY: These data suggest that IGFs may prevent known impairments in the pancreas and immune system in T1D and underscore the need to extend these studies, some of which were performed in health or other autoimmune diseases, toward T1D specifically. Collectively, the work emphasized here support the potential therapeutic use of IGFs in T1D prevention efforts as pancreatic growth factors and/or immunoregulatory agents.


Asunto(s)
Diabetes Mellitus Tipo 1/etiología , Somatomedinas/fisiología , Animales , Diabetes Mellitus Tipo 1/inmunología , Humanos , Páncreas/fisiología
14.
Front Immunol ; 7: 679, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119693

RESUMEN

Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs' innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs' soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/- Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate a proinflammatory microenvironment of the T1D-duodenum, whereby IECs have the potential to contribute to the expansion and polarization of innate and adaptive immune cells. Although these data do not discern whether these observations are not simply a consequence of T1D, the data indicate that the T1D-GI tract has the capacity to foster a permissive environment under which autoreactive T-cells could be expanded and polarized.

15.
Proc Natl Acad Sci U S A ; 111(27): 9881-6, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958882

RESUMEN

Prolonged or uncontrolled B-cell receptor (BCR) signaling is associated with autoimmunity. We previously demonstrated a role for actin in BCR signal attenuation. This study reveals that actin-binding protein 1 (Abp1/HIP-55/SH3P7) is a negative regulator of BCR signaling and links actin to negative regulatory pathways of the BCR. In both Abp1(-/-) and bone marrow chimeric mice, in which only B cells lack Abp1 expression, the number of spontaneous germinal center and marginal zone B cells and the level of autoantibody are significantly increased. Serum levels of T-independent antibody responses and total antibody are elevated, whereas T-dependent antibody responses are markedly reduced and fail to undergo affinity maturation. Upon activation, surface BCR clustering is enhanced and B-cell contraction delayed in Abp1(-/-) B cells, concurrent with slow but persistent increases in F-actin at BCR signalosomes. Furthermore, BCR signaling is enhanced in Abp1(-/-) B cells compared with wild-type B cells, including Ca(2+) flux and phosphorylation of B-cell linker protein, the mitogen-activated protein kinase kinase MEK1/2, and ERK, coinciding with reductions in recruitment of the inhibitory signaling molecules hematopoietic progenitor kinase 1 and SH2-containing inositol 5-phosphatase to BCR signalosomes. Our results indicate that Abp1 negatively regulates BCR signaling by coupling actin remodeling to B-cell contraction and activation of inhibitory signaling molecules, which contributes to the regulation of peripheral B-cell development and antibody responses.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Anticuerpos/sangre , Linfocitos B/citología , Centro Germinal/citología , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...