Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
iScience ; 26(10): 107946, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37854690

RESUMEN

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

3.
ACS Omega ; 3(8): 8655-8662, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458996

RESUMEN

Monolayer TiS2 is the lightest member of the transition metal dichalcogenide family with promising applications in energy storage and conversion systems. The use of TiS2 has been limited by the lack of rapid characterization of layer numbers via Raman spectroscopy and its easy oxidation in wet environment. Here, we demonstrate the layer-number-dependent Raman modes for TiS2. 1T TiS2 presents two characteristics of the Raman active modes, A1g (out-of-plane) and Eg (in-plane). We identified a characteristic peak frequency shift of the Eg mode with the layer number and an unexplored Raman mode at 372 cm-1 whose intensity changes relative to the A1g mode with the thickness of the TiS2 sheets. These two characteristic features of Raman spectra allow the determination of layer numbers between 1 and 5 in exfoliated TiS2. Further, we develop a method to produce oxidation-resistant inks of micron-sized mono- and few-layered TiS2 nanosheets at concentrations up to 1 mg/mL. These TiS2 inks can be deposited to form thin films with controllable thickness and nanosheet density over square centimeter areas. This opens up pathways for a wider utilization of exfoliated TiS2 toward a range of applications.

4.
Sci Rep ; 5: 9554, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25906088

RESUMEN

The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·10(14) cm(-2) has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T(2) component - that can be associated with electron-electron scattering - and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA