Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2402259121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917012

RESUMEN

HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ivabradina , Simulación de Dinámica Molecular , Ivabradina/química , Ivabradina/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Humanos , Microscopía por Crioelectrón , Animales , Canales de Potasio/química , Canales de Potasio/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo
2.
J Gen Physiol ; 155(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37523352

RESUMEN

Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels are important for timing biological processes like heartbeat and neuronal firing. Their weak cation selectivity is determined by a filter domain with only two binding sites for K+ and one for Na+. The latter acts as a weak blocker, which is released in combination with a dynamic widening of the filter by K+ ions, giving rise to a mixed K+/Na+ current. Here, we apply molecular dynamics simulations to systematically investigate the interactions of five alkali metal cations with the filter of the open HCN4 pore. Simulations recapitulate experimental data like a low Li+ permeability, considerable Rb+ conductance, a block by Cs+ as well as a punch through of Cs+ ions at high negative voltages. Differential binding of the cation species in specific filter sites is associated with structural adaptations of filter residues. This gives rise to ion coordination by a cation-characteristic number of oxygen atoms from the filter backbone and solvent. This ion/protein interplay prevents Li+, but not Na+, from entry into and further passage through the filter. The site equivalent to S3 in K+ channels emerges as a preferential binding and presumably blocking site for Cs+. Collectively, the data suggest that the weak cation selectivity of HCN channels and their block by Cs+ are determined by restrained cation-generated rearrangements of flexible filter residues.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Metales Alcalinos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Metales Alcalinos/metabolismo , Cationes/metabolismo , Sitios de Unión , Sodio/metabolismo , Potasio/metabolismo
3.
Methods Enzymol ; 652: 105-123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34059279

RESUMEN

Biochemical measurements of ligand binding to eukaryotic membrane proteins are challenging because they can require large amounts of purified protein. For this reason, ligand binding is preferentially evaluated on soluble domains rather than on the full length proteins. In this chapter, we describe the use of fluorescence size exclusion chromatography-based thermostability (FSEC-TS) as an assay to monitor ligand binding to the full length mammalian ion channel HCN4. FSEC-TS monitors the effect of the ligand on the thermal denaturation curve of the protein by following the fluorescence of a fused GFP protein. Changes in the melting temperature (Tm) provide a quantitative value for measuring ligand-protein interaction. As a proof of concept, we describe here the protocol for monitoring the binding of the second messenger cAMP and of the known HCN drug Ivabradine to the purified GFP-HCN4 channel. cTMP, a known non-binder of HCN channels, is used as a control. Due to the small amount of protein required, the assay represents a high-throughput screening system for evaluating binding of small molecules to full length proteins.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Cromatografía en Gel , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ligandos
4.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166608

RESUMEN

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Iones/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio/metabolismo , Línea Celular , Microscopía por Crioelectrón/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA