Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Big Data ; 6: 1082113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818822

RESUMEN

A nation cannot sustain a highly productive and efficient population without smart cities. Due to their significant reliance on digital technologies, these cities require a high level of cybercrime protection. Cryptocurrencies have gained significant attention due to their secure and reliable infrastructure. The decentralised cryptocurrency operates in a trust-less environment known as the blockchain, where each network participant has a ledger copy of all transactions. Blockchain technology employs a proven consensus mechanism without requiring establishment of a central authority. But the consensus mechanism requires miner to solve a cryptographic problem by generating random hashes until one of them matches the desired one. This procedure is energy-intensive, and when thousands of miners repeat it to verify a single transaction, a substantial amount of electricity is consumed. Moreover, electricity produces a significant amount of carbon footprint. Patch methodology utilises the data of all hashes created per year and the efficiency of mining hardware over a 10-year period to calculate the Bitcoins energy consumption. Due to a large number of unknown and uncertain factors involved, it is difficult to precisely calculate a single value for electricity consumption and carbon footprint as reported by Patch methodology. The proposed method extends the Patch methodology by adding a maximum and minimum limit to the hardware efficiency as well as the sources of power generation, which can help refine estimates of electricity consumption and carbon emissions for a more accurate picture. Using the proposed methodology, it was estimated that Bitcoin consumed between 38.495 and 120.72 terawatt hours of electricity in 2021 and released between 2.12 and 45.37 million metric tonnes of carbon dioxide. To address the issue of excessive energy consumption and carbon emissions, a significant number of individual miners and mining pools are relocating to energy-intensive regions, such as aluminium mining sites that rely on hydroelectricity for energy generation.

2.
Front Bioeng Biotechnol ; 11: 1324805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264582

RESUMEN

In recent times, nanoparticles have experienced a significant upsurge in popularity, primarily owing to their minute size and their remarkable ability to modify physical, chemical, and biological properties. This burgeoning interest can be attributed to the expanding array of biomedical applications where nanoparticles find utility. These nanoparticles, typically ranging in size from 10 to 100 nm, exhibit diverse shapes, such as spherical, discoidal, and cylindrical configurations. These variations are not solely influenced by the manufacturing processes but are also intricately linked to interactions with surrounding stabilizing agents and initiators. Nanoparticles can be synthesized through physical or chemical methods, yet the biological approach emerges as the most sustainable and eco-friendly alternative among the three. Among the various nanoparticle types, silver nanoparticles have emerged as the most encountered and widely utilized due to their exceptional properties. What makes the synthesis of silver nanoparticles even more appealing is the application of plant-derived sources as reducing agents. This approach not only proves to be cost-effective but also significantly reduces the synthesis time. Notably, silver nanoparticles produced through plant-mediated processes have garnered considerable attention in recent years due to their notable medicinal capabilities. This comprehensive review primarily delves into the diverse medicinal attributes of silver nanoparticles synthesized using plant-mediated techniques. Encompassing antimicrobial properties, cytotoxicity, wound healing, larvicidal effects, anti-angiogenesis activity, antioxidant potential, and antiplasmodial activity, the paper extensively covers these multifaceted roles. Additionally, an endeavor is made to provide an elucidated summary of the operational mechanisms underlying the pharmacological actions of silver nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...