Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Front Chem ; 12: 1372560, 2024.
Article En | MEDLINE | ID: mdl-38698937

Citrus reticulata dropped fruits are generally discarded as waste, causing environmental pollution and losses to farmers. In the present study, column chromatography has been used to isolate quinic acid (1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid) from the ethyl acetate fraction of a methanol extract of citrus fruits dropped in April. Quinic acid is a ubiquitous plant metabolite found in various plants and microorganisms. It is an important precursor in the biosynthesis of aromatic natural compounds. It was further derivatized into 3,4-o-isopropylidenequinic acid 1,5-lactone (QA1), 1,3,4,5-tetraacetoxycyclohexylaceticanhydride (QA2), and cyclohexane-1,2,3,5-tetraone (QA3). These compounds were further tested for their antibacterial potential against the foodborne pathogens Staphylococcus aureus, Bacillus spp., Yersinia enterocolitica, and Escherichia coli. QA1 exhibited maximum antibacterial potential (minimum inhibitory concentration; 80-120 µg/mL). QA1 revealed synergistic behavior with streptomycin against all the tested bacterial strains having a fractional inhibitory concentration index ranging from 0.29 to 0.37. It also caused a significant increase in cell constituent release in all the tested bacteria compared to the control, along with prominent biofilm reduction. The results obtained were further checked with computational studies that revealed the best docking score of QA1 (-6.30 kcal/mol, -5.8 kcal/mol, and -4.70 kcal/mol) against ß-lactamase, DNA gyrase, and transpeptidase, respectively. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis revealed that the drug-like properties of QA1 had an ideal toxicity profile, making it a suitable candidate for the development of antimicrobial drugs.

2.
Biophys Chem ; 305: 107144, 2024 02.
Article En | MEDLINE | ID: mdl-38061282

Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.


RNA, Ribosomal, 23S , Ribosomes , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , Ribosomes/chemistry , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Messenger/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism , Nucleic Acid Conformation
3.
Langmuir ; 39(36): 12865-12877, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37639338

The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.

4.
J Phys Chem B ; 127(27): 6049-6060, 2023 07 13.
Article En | MEDLINE | ID: mdl-37369074

Post-transcriptionally modified bases play vital roles in many biochemical processes involving RNA. Analysis of the non-covalent interactions associated with these bases in RNA is crucial for providing a more complete understanding of the RNA structure and function; however, the characterization of these interactions remains understudied. To address this limitation, we present a comprehensive analysis of base stacks involving all crystallographic occurrences of the most biologically relevant modified bases in a large dataset of high-resolution RNA crystal structures. This is accompanied by a geometrical classification of the stacking contacts using our established tools. Coupled with quantum chemical calculations and an analysis of the specific structural context of these stacks, this provides a map of the stacking conformations available to modified bases in RNA. Overall, our analysis is expected to facilitate structural research on altered RNA bases.


RNA , RNA/chemistry , Base Pairing , Models, Molecular , Nucleic Acid Conformation
5.
RNA ; 29(8): 1215-1229, 2023 08.
Article En | MEDLINE | ID: mdl-37188492

Understanding the frequency and structural context of discrete noncovalent interactions between nucleotides is of pivotal significance in establishing the rules that govern RNA structure and dynamics. Although T-shaped contacts (i.e., perpendicular stacking contacts) between aromatic amino acids and nucleobases at the nucleic acid-protein interface have recently garnered attention, the analogous contacts within the nucleic acid structures have not been discussed. In this work, we have developed an automated method for identifying and unambiguously classifying T-shaped interactions between nucleobases. Using this method, we identified a total of 3261 instances of T-shaped (perpendicular stacking) contacts between two nucleobases in an array of RNA structures from an up-to-date data set of ≤3.5 Å resolution crystal structures deposited in the Protein Data Bank.


Nucleic Acids , RNA , RNA/chemistry , DNA/chemistry , Nucleotides/chemistry
6.
J Chem Inf Model ; 63(2): 655-669, 2023 01 23.
Article En | MEDLINE | ID: mdl-36635230

Nucleobase π-π stacking is one of the crucial organizing interactions within three-dimensional (3D) RNA architectures. Characterizing the structural variability of these contacts in RNA crystal structures will help delineate their subtleties and their role in determining function. This analysis of different stacking geometries found in RNA X-ray crystal structures is the largest such survey to date; coupled with quantum-mechanical calculations on typical representatives of each possible stacking arrangement, we determined the distribution of stacking interaction energies. A total of 1,735,481 stacking contacts, spanning 359 of the 384 theoretically possible distinct stacking geometries, were identified. Our analysis reveals preferential occurrences of specific consecutive stacking arrangements in certain regions of RNA architectures. Quantum chemical calculations suggest that 88 of the 359 contacts possess intrinsically stable stacking geometries, whereas the remaining stacks require the RNA backbone or surrounding macromolecular environment to force their formation and maintain their stability. Our systematic analysis of π-π stacks in RNA highlights trends in the occurrence and localization of these noncovalent interactions and may help better understand the structural intricacies of functional RNA-based molecular architectures.


RNA , RNA/chemistry , Thermodynamics
7.
Drug Dev Res ; 84(1): 45-61, 2023 02.
Article En | MEDLINE | ID: mdl-36419404

In this study, we report the chemical synthesis, computational analysis, and anti-virulent studies of five Vanillin-based hybrids employing phytochemicals. Vanillin (V) is known to have substantial anti-quorum sensing activity against the gram-negative pathogen Pseudomonas aeruginosa. Therefore, with the aim to further enhance the potency of Vanillin, it was chemically conjugated via a triazole (T) linker with five phytochemicals- Zingerone (Z), Eugenol (E), Guaiacol (G), Cinnamaldehyde (C), and Ferulic acid (F) to form the hybrids named as VTZ (1), VTE (2), VTG (3), VTC (4), and VTF (5), respectively. Molecular docking studies revealed the strong binding affinity of the designed hybrids with quorum-sensing receptors (LasR, Rh1R, and PqsR). The synthesized hybrids were also evaluated for anti-quorum sensing activities to examine the efficacy against P. aeruginosa bacterial strains PAO1. The hybrids VTE (2), VTG (3), and VTC (4) displayed improved anti-quorum activity relative to Vanillin. Furthermore, the attenuation of virulence factors of P. aeruginosa (Las-A protease, Las-B elastase, pyocyanin pigmentation, and motility) in the presence of VTE (2), VTG (3), and VTC (4) further authenticated the anti-virulent activity of the hybrids. The new design strategy of the phytochemical-phytochemical scaffolds and their biological evaluation provides a proof of concept for the simultaneous perturbation of well-established anti-virulent targets. This appears to be highly promising and effective strategy to ameliorate the enigma of antimicrobial resistance.


Pseudomonas aeruginosa , Venous Thromboembolism , Humans , Biofilms , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology
8.
Chemphyschem ; 24(5): e202200714, 2023 03 01.
Article En | MEDLINE | ID: mdl-36315394

Expansion of the genetic alphabet is an ambitious goal. A recent breakthrough has led to the eight-base (hachimoji) genetics having canonical and unnatural bases. However, very little is known on the molecular-level features that facilitate the candidature of unnatural bases as genetic alphabets. Here we amalgamated DFT calculations and MD simulations to analyse the properties of the constituents of hachimoji DNA and RNA. DFT reveals the dominant syn conformation for isolated unnatural deoxyribonucleosides and at the 5'-end of oligonucleotides, although an anti/syn mixture is predicted at the nonterminal and 3'-terminal positions. However, isolated ribonucleotides prefer an anti/syn mixture, but mostly prefer anti conformation at the nonterminal positions. Further, the canonical base pairing combinations reveals significant strength, which may facilitate replication of hachimoji DNA. We also identify noncanonical base pairs that can better tolerate the substitution of unnatural pairs in RNA. Stacking strengths of 51 dimers reveals higher average stacking stabilization of dimers of hachimoji bases than canonical bases, which provides clues for choosing energetically stable sequences. A total of 14.4 µs MD simulations reveal the influence of solvent on the properties of hachimoji oligonucleotides and point to the likely fidelity of replication of hachimoji DNA. Our results pinpoint the features that explain the experimentally observed stability of hachimoji DNA.


Nucleic Acids , DNA/genetics , DNA/chemistry , Base Pairing , Oligonucleotides/chemistry , RNA/chemistry , Nucleic Acid Conformation
9.
Phys Chem Chem Phys ; 25(1): 857-869, 2022 Dec 21.
Article En | MEDLINE | ID: mdl-36512335

In the present work, 86 available high resolution X-ray structures of proteins that contain one or more guanidinium ions (Gdm+) are analyzed for the distribution and nature of noncovalent interactions between Gdm+ and amino-acid residues. A total of 1044 hydrogen-bonding interactions were identified, of which 1039 are N-H⋯O, and five are N-H⋯N. Acidic amino acids are more likely to interact with Gdm+ (46% of interactions, 26% Asp and 20% Glu), followed by Pro (19% of interactions). DFT calculations on the identified Gdm+-amino acid hydrogen-bonded pairs reveal that although Gdm+ interacts primarily with the backbone amides of nonpolar amino acids, Gdm+ does interact with the sidechains of polar and acidic amino acids. We classified the optimized Gdm+-amino acid pairs into parallel [p], bifurcated [b], single hydrogen bonded [s] and triple hydrogen bonded [t] types. The [p] and [t] type pairs possess higher average interaction strength that is stronger than that of [b] and [s] type pairs. Negatively charged aspartate and glutamate residues interact with Gdm+ ion exceptionally tightly (-76 kcal mol-1) in [p] type complexes. This work provides statistical and energetics insights to better describe the observed destabilization or denaturation process of proteins by guanidinium salts.


Amino Acids , Proteins , Guanidine/chemistry , Protein Denaturation , Proteins/chemistry , Glutamic Acid/chemistry , Ions/chemistry , Amino Acids, Acidic , Hydrogen Bonding
10.
Chemphyschem ; 23(2): e202100731, 2022 01 19.
Article En | MEDLINE | ID: mdl-34747094

A nonredundant dataset of ∼300 high (up to 2.5 Å) resolution X-ray structures of RNA : protein complexes were analyzed for hydrogen bonds between amino-acid residues and canonical ribonucleotides (rNs). The identified 17100 contacts were classified based on the identity (rA, rC, rG or rU) and interacting fragment (base, sugar, or ribose) of the rN, the nature (polar or nonpolar) and interacting moiety (main chain or side chain) of the amino-acid residue, as well as the rN and amino-acid atoms participating in the hydrogen bonding. 80 possible hydrogen-bonding combinations (4 (rNs)×20 (amino acids)) involve a wide variety of RNA and protein types and are present in multiple occurrences in almost all PDB files. Comparison with the analogously-selected DNA:protein complexes reveals that the absence of 2'-OH group in DNA mainly accounts for the differences in DNA:protein and RNA : protein hydrogen bonding. Search for intrinsically-stable base:amino acid pairs containing single or multiple hydrogen bonds reveals 37 unique pairs, which may act as well-defined RNA : protein interaction motifs. Overall, our work collectively analyzes the largest set of nucleic acid-protein hydrogen bonds to date, and therefore highlights several trends that may help frame structural rules governing the physiochemical characteristics of RNA : protein recognition.


Proteins , RNA , Amino Acids/chemistry , DNA/chemistry , Hydrogen Bonding , Proteins/chemistry , RNA/chemistry
11.
J Chem Inf Model ; 61(10): 5243-5255, 2021 10 25.
Article En | MEDLINE | ID: mdl-34609872

Guanidinium ion is a toxic cellular metabolite. The ykkC-III riboswitch, an mRNA stretch, regulates the gene expression by undergoing a conformational change in response to the binding of a free guanidinium ion and thereby plays a potentially important role in alleviating guanidinium toxicity in cells. An experimental crystal structure of the guanidinium-bound aptamer domain of the riboswitch from Thermobifida Fusca revealed the overall RNA architecture and mapped the specific noncovalent interactions that stabilize the ligand within the binding pocket aptamer. However, details of how the aptamer domain discriminates the cognate ligand from its closest structurally analogous physiological metabolites (arginine and urea), and how the binding of cognate ligand arrays information from the aptamer domain to the expression platform for regulating the gene expression, are not well understood. To fill this void, we perform a cumulative of 2 µs all-atom explicit-solvent molecular dynamics (MD) simulations on the full aptamer domain, augmented with quantum-chemical calculations on the ligand-binding pocket, to compare the structural and dynamical details of the guanidinium-bound state with the arginine or urea bound states, as well as the unbound (open) state. Analysis of the ligand-binding pocket reveals that due to unfavorable interactions with the binding-pocket residues, urea cannot bind the aptamer domain and thereby cannot alter the gene expression. Although interaction of the guanidyl moiety of arginine within the binding pocket is either comparable or stronger than the guanidinium ion, additional non-native hydrogen-bonding networks, as well as differences in the dynamical details of the arginine-bound state, explain why arginine cannot transmit the information from the aptamer domain to the expression platform. Based on our simulations, we propose a mechanism of how the aptamer domain communicates with the expression platform. Overall, our work provides interesting insights into the ligand recognition by a specific class of riboswitches and may hopefully inspire future studies to further understand the gene regulation by riboswitches.


Riboswitch , Guanidine , Ligands , Molecular Dynamics Simulation , Nucleic Acid Conformation
12.
J Chem Inf Model ; 61(9): 4321-4330, 2021 09 27.
Article En | MEDLINE | ID: mdl-34491053

The origin of genetic material on earth is an age-old, entangled mystery that lacks a unanimous explanation. Recent studies have suggested that noncanonical bases such as barbituric acid (BA), melamine (MM), cyanuric acid (CA), and 2,4,6-triaminopyrimidine (TAP) may have undergone molecular selection within the "prebiotic soup" to spontaneously form supramolecular assemblies, which then covalently assembled into an RNA-like polymer (preRNA). However, information on the role of intrinsic interactions of these candidate heterocycles in their molecular selection as the components of preRNA, and the subsequent transition from preRNA to RNA, is currently missing in the literature. To fill this gap in our knowledge on the origin and evolution of primitive genetics, the present work employs density functional theory (B3LYP-D3) to evaluate and compare the stacking propensities of dimers containing prebiotic noncanonical (BA, MM, CA, and TAP) and/or canonical RNA bases (A, C, G, and U). Our detailed analysis of the variation in stacking strength with respect to four characteristic geometrical parameters between the monomers [i.e., the vertical distance, the angle of rotation, and (two) displacements in the x and y directions] reveals that stacking between nonidentical bases is preferred over identical bases for both prebiotic-prebiotic and canonical-canonical dimers. This not only underscores the similarity between the fundamental chemical properties of preRNA and RNA constituents but also supports the likelihood of the evolution of modern (RNA) genetics from primitive (preRNA) genetics. Furthermore, greater average stacking stabilization of canonical dimers than that of dimers containing one canonical and one preRNA nucleobase (by ∼5 kJ mol-1) or dimers solely containing preRNA nucleobases (by ∼12 kJ mol-1) indicates that enhanced stacking is an important factor that may have spurred the evolution of preRNA to an intermediate informational polymer to RNA. More importantly, our study identifies the central roles of CA, BA, and TAP in stacking stabilization within the preRNA and of BA in stacking interactions within the intermediate polymers and suggests that these heterocycles may have played distinct roles in various stages during the evolution from preRNA to RNA. Overall, our results highlight the significance of stacking interactions in the selection of nucleobase components of preRNA.


RNA , RNA/genetics
13.
Chemphyschem ; 22(15): 1622-1630, 2021 08 04.
Article En | MEDLINE | ID: mdl-34101319

DFT calculations are employed to quantify the influence of the presence, number, nature, and position of posttranscriptional methylation on stacking strength of RNA bases. We carry out detailed potential energy scans of the variation in stacking energies with characteristic geometrical parameters in three categories of forty stacked dimers - canonical base homodimers (N||N), methylated base homodimers (mN||mN) and heterodimers of canonical bases and methylated counterparts (N||mN). Our analysis reveals that neutral methylation invariably enhances the stacking of bases. Further, N||mN stacking is stronger than mN||mN stacking and charged N||mN exhibit strongest stacking among all dimers. This indicates that methylations greatly enhance stacking when dispersed in RNA sequences containing identical bases. Comparison of stacks involving singly- and doubly-methylated purines reveal that incremental methylation enhances the stacking in neutral dimers. Although methylation at the carbon position of neutral pyrimidine dimers greatly enhances the stacking, methylation on the 5-membered ring imparts better stacking compared to methylation on the 6-membered ring in adenine dimers. However, methylation at the ring nitrogen (N1 ) provides better stacking than the amino group (N2 ) in guanine dimers. Our results thus highlight subtle structural effects of methylation on RNA base stacking and will enhance our understanding of the physicochemical principles of RNA structure and dynamics.


RNA Processing, Post-Transcriptional , RNA/chemistry , RNA/metabolism , Adenine/chemistry , Adenine/metabolism , Cytosine/chemistry , Cytosine/metabolism , Density Functional Theory , Dimerization , Guanine/chemistry , Guanine/metabolism , Methylation , Uracil/chemistry , Uracil/metabolism
14.
J Chem Inf Model ; 61(3): 1470-1480, 2021 03 22.
Article En | MEDLINE | ID: mdl-33570947

The astonishing diversity in folding patterns of RNA three-dimensional (3D) structures is crafted by myriads of noncovalent contacts, of which base pairing and stacking are the most prominent. A systematic and comprehensive classification and annotation of these interactions is necessary for a molecular-level understanding of their roles. However, unlike in the case of base pairing, where a widely accepted nomenclature and classification scheme exists in the public domain, currently available classification schemes for base-base stacking need major enhancements to comprehensively capture the necessary features underlying the rich stacking diversity in RNA. Here, we extend the previous stacking classification based on nucleobase interacting faces by introducing a structurally intuitive geometry-cum topology-based scheme. Specifically, a stack is first classified in terms of the geometry described by the relative orientation of the glycosidic bonds, which generates eight basic stacking geometric families for heterodimeric stacks and six of those for homodimeric stacks. Further annotation in terms of the identity of the bases and the region of involvement of purines (five-membered, six-membered, or both rings) leads to the enumeration of 384 distinct RNA base stacks. Based on our classification scheme, we present an algorithm for automated identification of stacks in RNA crystal structures and analyze the stacking context in selected RNA structures. Overall, the work described here is expected to greatly facilitate the structure-based RNA research.


Algorithms , RNA , Base Pairing , Humans , Hydrogen Bonding , Nucleic Acid Conformation , RNA/genetics
15.
J Biomol Struct Dyn ; 39(15): 5411-5426, 2021 09.
Article En | MEDLINE | ID: mdl-32662328

Hydrogen bonding between amino acids and nucleobases is important for RNA-protein recognition. As a first step toward understanding the physicochemical features of these contacts, the present work employs density functional theory calculations to critically analyze the intrinsic structures and strength of all theoretically possible model hydrogen-bonded complexes involving RNA nucleobase edges and polar amino acid side chains. Our geometry optimizations uncover a number of unique complexes that involve variable hydrogen-bonding characteristics, including conventional donor-acceptor interactions, bifurcated interactions and single hydrogen-bonded contacts. Further, significant strength of these complexes in the gas phase (-27 kJ mol-1 to -226 kJ mol-1) and solvent phase (-19 kJ mol-1 to -78 kJ mol-1) points toward the ability of associated contacts to provide stability to RNA-protein complexes. More importantly, for the first time, our study uncovers the features of complexes involving protonated nucleobases, as well as those involving the weakly polar cysteine side chain, and thereby highlights their potential importance in biological processes that involve RNA-protein interactions. Additional analysis on select base pair-amino acid complexes uncovers the ability of amino acid side chain to simultaneously interact with both nucleobases of the base pair, and highlights the greater strength of such interactions compared to base-amino acid interactions. Overall, our analysis provides a basic physicochemical framework for understanding the molecular basis of nucleic acid-protein interactions. Further, our quantum chemical data can be used to design better algorithms for automated search of these contacts at the RNA-protein interface.Communicated by Ramaswamy H. Sarma.


DNA , RNA , Amino Acids , Base Pairing , Hydrogen Bonding , Quantum Theory , Thermodynamics
16.
Phys Chem Chem Phys ; 22(41): 23754-23765, 2020 Nov 07.
Article En | MEDLINE | ID: mdl-33063082

A comprehensive (DFT and MD) computational study is presented with the goal to design and analyze model chalcogen-bonded modified nucleobase pairs that replace one (i.e., AXY:T, G:CXY, GXY:C) or two (GXY:CX'Y', X/X' = S, Se and Y/Y' = F, Cl, Br) Watson-Crick (WC) hydrogen bonds of the canonical A:T or G:C pair with chalcogen bond(s). DFT calculations on 18 base pair combinations that replace one WC hydrogen bond with a chalcogen bond reveal that the bases favorably interact in the gas phase (binding strengths up to -140 kJ mol-1) and water (up to -85 kJ mol-1). Although the remaining hydrogen bond(s) exhibits similar characteristics to those in the canonical base pairs, the structural features of the (Y-XO) chalcogen bond(s) change significantly with the identity of X and Y. The 36 doubly-substituted (GXY:CX'Y') base pairs have structural deviations from canonical G:C similar to those of the singly-substituted modifications (G:CXY or GXY:C). Furthermore, despite the replacement of two strong hydrogen bonds with chalcogen bonds, some GXY:CX'Y' pairs possess comparable binding energies (up to -132 kJ mol-1 in the gas phase and up to -92 kJ mol-1 in water) to the most stable G:CXY or GXY:C pairs, as well as canonical G:C. More importantly, G:C-modified pairs containing X = Se (high polarizability) and Y = F (high electronegativity) are the most stable, with comparable or slightly larger (by up to 13 kJ mol-1) binding energies than G:C. Further characterization of the chalcogen bonding in all modified base pairs (AIM, NBO and NCI analyses) reveals that the differences in the binding energies of modified base pairs are mainly dictated by the differences in the strengths of their chalcogen bonds. Finally, MD simulations on DNA oligonucleotides containing the most stable chalcogen-bonded base pair from each of the four classifications (AXY:T, G:CXY, GXY:C and GXY:CX'Y') reveal that the singly-modified G:C pairs best retain the local helical structure and pairing stability to a greater extent than the modified A:T pair. Overall, our study identifies two (G:CSeF and GSeF:C) promising pairs that retain chalcogen bonding in DNA and should be synthesized and further explored in terms of their potential to expand the genetic alphabet.


Base Pairing , DNA/chemistry , Organoselenium Compounds/chemistry , Sulfides/chemistry , Density Functional Theory , Hydrogen Bonding , Models, Chemical , Molecular Dynamics Simulation
17.
Chem Res Toxicol ; 33(10): 2573-2583, 2020 10 19.
Article En | MEDLINE | ID: mdl-32975111

Exposure to aristolochic acid I and II (AAI and AAII) has been implicated in aristolochic acid nephropathy and urothelial carcinoma. The toxicological effects of AAs are attributed to their ability to form aristolacatam (AL)-purine DNA adducts. Among these lesions, the AL-adenine (ALI-N6-A and ALII-N6-A) adducts cause the "signature" A → T transversion mutations associated with AA genotoxicity. To provide the currently missing structural basis for the induction of these signature mutations, the present work uses classical all-atom molecular dynamics simulations to examine different (i.e., preinsertion, insertion, and postextension) stages of replication past the most abundant AA adduct (ALI-N6-A) by a representative lesion-bypass DNA polymerase (Dpo4). Our analysis reveals that, before dNTP incorporation (i.e., preinsertion step), ALI-N6-A adopts a nearly planar conformation at the N6-linkage and the ALI moiety intercalates within the DNA helix. Since this conformation occupies the dNTP binding site, the same planar lesion conformation results in a significant distortion of the polymerase active site at the insertion step and therefore replication will likely not be successful. However, if ALI-N6-A undergoes a small conformational change to introduce non-planarity at the N6-linkage during the insertion step, minimal distortion occurs in the Dpo4 active site upon incorporation of dATP. This insertion and subsequent extension would initially lead to A:A mismatches and then result in A → T transversion mutations during the second round of replication. In contrast, if a large conformation flip of the ALI moiety occurs at the insertion step to reorient the bulky moiety from an intercalated position into the major groove, dTTP (non-mutagenic) incorporation will be favored. Molecular dynamics (MD) simulations on postextension complexes reveal that damaged DNA will likely further rearrange during later replication steps to acquire a base-displaced intercalated conformation that is similar to that previously reported for (unbound) ALI-N6-A adducted DNA, with the exception of slight non-planarity at the lesion site. Overall, our results provide a structural explanation for both the successful non-mutagenic lesion bypass and the preferential misincorporation of dATP opposite ALI-N6-A and thereby rationalize the previously reported induction of A → T signature transversion mutations associated with AAs. This work should thereby inspire future biochemical experiments and modeling studies on the replication of this important class of DNA lesions by related human translesion synthesis polymerases.


Aristolochic Acids/chemistry , DNA Adducts/chemistry , DNA-Directed DNA Polymerase/chemistry , Molecular Dynamics Simulation , Aristolochic Acids/genetics , Aristolochic Acids/metabolism , DNA Adducts/genetics , DNA Adducts/metabolism , DNA Replication/genetics , DNA-Directed DNA Polymerase/metabolism , Density Functional Theory , Humans , Molecular Structure , Mutation
18.
ACS Omega ; 5(7): 3612-3623, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-32118177

Ribonucleotide:protein interactions play crucial roles in a number of biological processes. Unlike the RNA:protein interface where van der Waals contacts are prevalent, the recognition of a single ribonucleotide such as ATP by a protein occurs predominantly through hydrogen-bonding interactions. As a first step toward understanding the role of hydrogen bonding in ribonucleotide:protein recognition, the present work employs density functional theory to provide a detailed quantum-mechanical analysis of the structural and energetic characteristics of 18 unique hydrogen-bonded pairs involving the nucleobase/nucleoside moiety of four canonical ribonucleotides and the side chains of three polar amino-acid residues (arginine, glutamine, and glutamic acid) of proteins. In addition, we model five new pairs that are till now not observed in crystallographically identified ribonucleotide:protein complexes but may be identified in complexes crystallized in the future. We critically examine the characteristics of each pair in its ribonucleotide:protein crystal structure occurrence and (gas phase and water phase) optimized intrinsic structure. We further evaluated the interaction energy of each pair and characterized the associated hydrogen bonds using a number of quantum mechanics-based relationships including natural bond orbital analysis, quantum theory atoms in molecules analysis, Iogansen relationships, Nikolaienko-Bulavin-Hovorun relationships, and noncovalent interaction-reduced density gradient analysis. Our analyses reveal rich variability in hydrogen bonds in the crystallographic as well as intrinsic structure of each pair, which includes conventional O/N-H···N/O and C-H···O hydrogen bonds as well as donor/acceptor-bifurcated hydrogen bonds. Further, we identify five combinations of nucleobase and amino acid moieties; each of which exhibits at least two alternate (i.e., multimodal) structures that interact through the same nucleobase edge. In fact, one such pair exhibits four multimodal structures; one of which possesses unconventional "amino-acceptor" hydrogen bonding with comparable (-9.4 kcal mol-1) strength to the corresponding conventional (i.e., amino:donor) structure (-9.2 kcal mol-1). This points to the importance of amino-acceptor hydrogen bonds in RNA:protein interactions and suggests that such interactions must be considered in the future while studying the dynamics in the context of molecular recognition. Overall, our study provides preliminary insights into the intrinsic features of ribonucleotide:amino acid interactions, which may help frame a clearer picture of the molecular basis of RNA:protein recognition and further appreciate the role of such contacts in biology.

20.
ACS Omega ; 4(7): 12771-12781, 2019 Jul 31.
Article En | MEDLINE | ID: mdl-31460401

Knowledge of prebiotic nucleobase formation is important for understanding the origin of contemporary genetics. Observation of nucleobase precursor radicals in previous impact laser plasma simulations of the late heavy bombardment period (FerusProc. Natl. Acad. Sci. U.S.A.2015, 112, 657) points toward possible nucleobase formation through free-radical pathways. However, previously explored radical routes to nucleobase formation involve a large number of reaction steps, repetitive addition of precursors, and a number of chemical transformations. The possibility of competing side reactions under such conditions questions the feasibility of such pathways. In view of these shortcomings, the present work employs density functional theory to explore purine formation pathways through reaction of cyanamide and cyanoacetylene with radicals via a five-membered intermediate, 4-cyanoimidazole in the presence of ammonia. Our analysis reveals that the skeletal components of 4-cyanoimidazole can be solely obtained from cyanamide and cyanoacetylene via barrierless cyclization and a small number of reaction steps. In addition, the proposed mechanisms are characterized by a small number of precursors and low energy barriers and are thus likely feasible under extreme conditions on the prebiotic earth such as meteoritic impact during late heavy bombardment period. Overall, the present study underscores the importance of cyanamide and cyanoacetylene precursors in kinetically accessible routes to purine formation.

...